TOWARD AN ASIAN INTEGRATED TRANSPORT NETWORK

Monograph Series on Managing Globalization

No.1
TOWARD AN ASIAN INTEGRATED
TRANSPORT NETWORK

Monograph Series on Managing Globalization
No. 1

United Nations
New York, 2005
Acknowledgement: This document was prepared by John Moon and Richard Alexander Roehrl of the Transport Policy and Tourism Section, Transport and Tourism Division (TTD), United Nations Economic and Social Commission for Asia and the Pacific.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of firm names and commercial products does not imply the endorsement of the United Nations.

The term “ESCAP region” is used in the present document to include Afghanistan; American Samoa; Armenia; Australia; Azerbaijan; Bangladesh; Bhutan; Brunei Darussalam; Cambodia; China; Cook Islands; Democratic People’s Republic of Korea; Fiji; French Polynesia; Georgia; Guam; Hong Kong, China; India; Indonesia; Iran (Islamic Republic of); Japan; Kazakhstan; Kiribati; Kyrgyzstan; Lao People’s Democratic Republic; Macao, China; Malaysia; Maldives; Marshall Islands; Micronesia (Federated States of); Mongolia; Myanmar; Nauru; Nepal; New Caledonia; New Zealand; Niue; Northern Mariana Islands; Pakistan; Palau; Papua New Guinea; Philippines; Republic of Korea; Russian Federation; Samoa; Singapore; Solomon Islands; Sri Lanka; Tajikistan; Thailand; Timor-Leste; Tonga; Turkey; Turkmenistan; Tuvalu; Uzbekistan; Vanuatu; and Viet Nam. The term “developing ESCAP region” excludes Australia, Japan and New Zealand.

The term “Central Asia” in this publication refers to Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan.

On 1 July 1997, Hong Kong became Hong Kong, China. Mention of "Hong Kong" in the text refers to a date prior to 1 July 1997. On 20 December 1999, Macau became Macao, China. Mention of “Macau” in the text refers to a date prior to 20 December 1999.

The term “billion” signifies a thousand million. Reference to “tons” indicates metric tons. Unless otherwise stated, current United States dollars have been used throughout.

This publication has been issued without formal editing.
PART ONE: INTRODUCTION

I. BACKGROUND AND OBJECTIVES

A. BACKGROUND
B. OBJECTIVE, APPROACH AND SCOPE OF THE STUDY
C. OUTLINE OF THE STUDY

II. NETWORK INTEGRATION

A. INTRODUCTION
B. INTEGRATED TRANSPORT NETWORKS

PART TWO: CONCEPTS AND ISSUES

III. GLOBALIZATION AND INFRASTRUCTURE NETWORKS

A. THE EAST ASIAN MIRACLE
B. CONTRIBUTION OF NETWORKS TO GLOBALIZATION
C. CONCLUSION

IV. NETWORK INFRASTRUCTURE, DEVELOPMENT AND POVERTY

A. PRODUCTIVITY AND LONG-RUN GROWTH
B. POVERTY REDUCTION
C. CONCLUSION

V. GENERAL NETWORK CHARACTERISTICS

A. PHYSICAL NETWORKS
B. NON-PHYSICAL NETWORKS
C. LINKAGES
D. EXTERNALITIES AND NETWORK EFFECTS
E. CONCLUSION

VI. REGIONALIZATION AND RELATED ISSUES IN DEVELOPING INTER-COUNTRY INFRASTRUCTURE NETWORKS

A. REGIONALIZATION
B. ISSUES IN DEVELOPING INTER-COUNTRY INFRASTRUCTURES
C. CONCLUSION

VII. REGIONALISM: GOVERNMENT-LEVEL REGIONAL COOPERATION IN INFRASTRUCTURE
B. FINANCING MECHANISMS ... 79

PART FIVE: POLICY RECOMMENDATIONS AND WAY FORWARD 85

XIII. STRATEGIES, PROGRAMMES AND ACTIVITIES FOR CONSIDERATION 85

A. INTRODUCTION .. 85
B. STRATEGIES ... 86
C. PROGRAMMES .. 91
D. ACTIVITIES .. 92

XIV. SELECTED INSTITUTIONAL PROPOSALS FOR CONSIDERATION 95

ANNEXES: ... 100

ANNEX I: REVIEW OF REGIONAL COOPERATION IN TRANSPORT INFRASTRUCTURE DEVELOPMENT IN ASIA AND THE PACIFIC 100

B. REGIONAL COOPERATION IN ASIAN LAND TRANSPORT DEVELOPMENT 100
C. REGIONAL COOPERATION IN MARITIME TRANSPORT DEVELOPMENT 111
D. REGIONAL COOPERATION IN INTERMODAL TRANSPORT DEVELOPMENT 115

ANNEX II: MEMBERSHIP OF REGIONAL AND SUBREGIONAL ORGANISATIONS, AGREEMENTS AND PROGRAMMES .. 117

List of Figures:
FIGURE 1: OFFICIAL MAP OF THE “ESCAP REGION” .. 8
FIGURE 2: BELOW THE TIP OF THE “ICBERG” OF GLOBALIZATION, SOURCE: ESCAP SECRETARIAT 11
FIGURE 3: THREE TYPES OF INTERMODAL SURFACE TRANSPORT MOVEMENTS, SOURCE: 13
FIGURE 4: VICIOUS CIRCLE OF LACK OF ACCESS TO TRANSPORT FACILITIES AND SERVICES 26
FIGURE 5: LINKING TWO SUBNETWORKS. .. 29
FIGURE 6: TYPES OF NETWORK TOPOLOGY .. 32
FIGURE 7: INTERMODAL TRANSPORT SYSTEM .. 33
FIGURE 8: SYMBOLIC ILLUSTRATION OF LINKAGES BETWEEN (PHYSICAL AND NON-PHYSICAL) NETWORKS IN TRANSPORT, ICT, TRADE AND GOVERNANCE .. 34
FIGURE 9: TRANS EUROPE ASIA INFORMATION NETWORK (TEIN): ACTUAL ROUTE IN NOVEMBER 2003 .. 43
FIGURE 10: NUMBER OF MEMBERS VERSUS THEIR DATE OF ESTABLISHMENT FOR INTERGOVERNMENTAL AGREEMENTS, ORGANISATIONS AND PROGRAMMES ADDRESSING SUBREGIONAL OR REGIONAL COOPERATION IN ASIA AND THE PACIFIC ... 45
FIGURE 11: APAN NETWORKING ENVIRONMENT .. 47
FIGURE 12: PROPOSED INTEGRATED TRANSPORT NETWORK IN NORTH-EAST ASIA 62
FIGURE 13: AVERAGE TRANSIT TIME FOR THE EXPORT OF CONTAINERIZED CARGO (PER TEU; FOR KAZAKHSTAN – GERMANY PER HALF OF 12 METER SEMI TRAILER) .. 65
FIGURE 14: AVERAGE TRANSIT COSTS FOR THE EXPORT OF CONTAINERIZED CARGO (PER TEU; FOR KAZAKHSTAN – GERMANY PER HALF OF 12 METER SEMI TRAILER) .. 66
FIGURE 15: NIGHT LIGHT DENSITY MAP OF ASIA AND MAJOR PORTS. NIGHT LIGHT DENSITY IS A GOOD PROXY FOR GDP (LINEAR RELATIONSHIP). CREATED WITH ESCAP’S GIS TOOL (TTDIS). DATA SOURCE: NOAA.

FIGURE 17: CHANGES IN POTENTIAL ACCESSIBILITY DUE TO AN UPGRADE OF THE ROAD BETWEEN SHYMKENT AND AKTYUBINSK, LEADING TO AN INCREASE IN SPEED BY 10 PERCENT.

FIGURE 18: SCHEMATIC OUTLINE OF POTENTIAL PROGRAMME STRUCTURE.

FIGURE 20: ESCAP-PROMOTED DEMONSTRATION RUNS OF CONTAINER BLOCK-TRAINS ALONG THE TAR NORTHERN CORRIDOR.

List of Tables:

TABLE 1: SELECTED MAJOR ISSUES FOR EFFECTIVE REGIONAL COOPERATION IN THE TRANSPORT AND COMMUNICATIONS SECTORS.

TABLE 2: SUBSTANTIVE CONTENT OF CURRENT REGIONAL COOPERATION IN INFRASTRUCTURE, FACILITIES AND SERVICES.

TABLE 3: MATRIX OF AGREEMENTS/ORGANIZATIONS VERSUS ITS MEMBER COUNTRIES IN ASIA.

TABLE 4: OVERVIEW OF MAJOR INTERGOVERNMENTAL ORGANIZATIONS FOR REGIONAL AND SUBREGIONAL COOPERATION IN GENERAL.

TABLE 5: OVERVIEW OF MAJOR INTERGOVERNMENTAL ORGANIZATIONS FOR REGIONAL AND SUBREGIONAL COOPERATION IN A SPECIFIC SECTOR (TRANSPORT OR ICT).

TABLE 6: OVERVIEW OF SELECTED REGIONAL OR SUBREGIONAL PROGRAMMES ON COOPERATION OF A GENERAL NATURE.

TABLE 7: OVERVIEW OF SELECTED REGIONAL OR SUBREGIONAL PROGRAMMES ON EITHER TRANSPORT OR ICT IN ASIA AND THE PACIFIC.
PART ONE: INTRODUCTION

I. BACKGROUND AND OBJECTIVES

A. Background

The United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) is the regional arm of the United Nations in the Asia and the Pacific region\(^1\). It is located in Bangkok, Thailand.

ESCAP activities in the field of transport are guided by global United Nations mandates, such as the Millennium Development Declaration, as well as ESCAP’s specific regional mandates, in particular, those contained in the Declaration of the Ministerial Conference on Infrastructure, held in Seoul from 16-17 November 2001.

The Ministerial Conference on Infrastructure adopted a Regional Action Programme\(^2\) for 2002-2006, that, inter alia, recommended the promotion of an Asian Integrated Transport Network. In particular, point 1.3. of the Programme (“Integrated transport network and intermodal linkages”) mandated the ESCAP Secretariat to produce two outputs in this regard\(^3\): “

1. A conceptual plan formulated for an integrated regional transport network for Asia covering all transport modes, including railway, roads, water transport, ports, freight terminals and airports.
2. Recommendations for the development of intermodal transport facilities at the country, subregional and regional levels.”

In this regard, the ESCAP Secretariat has taken preliminary steps through a series of subregional studies, the first of which focused on North-East Asia with the second one on Central Asia currently in preparation. The studies are carried out to collect data, identify bottlenecks and identify potential routes for an Asian integrated transport network\(^4\).

The current document is the first of a number of planned contributions to formulate a conceptual plan (“output 1”). The resulting choice of methodology, together with the route-specific information collected through the subregional studies will allow the definition of specific recommendations on the country, subregional and regional level (“output 2”) during the course of 2006.

The annual, legislative sessions of the Commission have elaborated these outputs further in the form of ESCAP’s biennial work programme 2004-2005. In particular, the current document was mandated, to be entitled Toward an Asian Integrated Transport Network, and to be published under the Monograph Series on Managing

1 http://www.unescap.org/about/index.asp
2 This is known as the “Regional Action Programme (2002-2006) of the New Delhi Action Plan on Infrastructure Development in Asia and the Pacific” as it is a continuation of and earlier regional action programme that was adopted in the earlier Ministerial Conference on Infrastructure in New Delhi in 1996.
Globalisation, due to the central role played by international integrated transport in the fragmented international production systems which are a main characteristic of the current wave of globalization of the past three decades, and especially so in Asia.

Finally, it should be noted that there are a number of related inter-continental activities that are going in parallel and in which ESCAP also plays a role. For example, the various activities that are promoting Euro-Asian Linkages are a case in point. In fact, the recent declaration of the Euro-Asian Conference on Transport held in St. Petersburg specifies elements of a strategy to develop an integrated Euro-Asian Transport network (the details of which are also described in this study).

B. Objective, approach and scope of the study

1. Objective

The current document is part of ongoing work of the Transport and Tourism Division of ESCAP, the major outcome of which will be a conceptual plan for an Asian integrated regional transport network covering all transport modes, including railway, roads, water transport, ports, freight terminals and airports.

The objective of this document is to perform a comprehensive fact-finding and to lay out a broad vision, for consideration by national policy makers in Asia and the Pacific. It aims to

a) define the scope of the proposed Asian Integrated Transport Network and possible paths towards its realization;

b) bring together in one document all relevant information on the status of the Asian transport networks, relevant regional cooperation initiatives, policy environment, and relevant tools and guidelines;

c) provide preliminary guidance on necessary strategies, policies, programs and activities, including the role of governments in the process, investment needs and financing mechanisms.

Consequently, this monograph is designed to complement and provide the necessary broad background information for route-specific studies that are carried out in parallel on a subregional basis by the ESCAP Secretariat.

2. Approach

This study follows a pragmatic approach. In fact, it draws on policy-relevant work from various disciplines, including economics, social sciences, systems science, transport geography, economic geography, engineering, public policy, environmental science, and risk management. As anyone who has seen economists and engineers working with each other, drawing on concepts from all these disciplines in one document is a formidable challenge. This is due to a number of reasons, such as different terminologies and objectives. However, in essence, a purely “technical” or “engineering” solution to the challenge of developing an Asian integrated transport network does not appear sufficient from a national policy makers point of view. Economic, business, social, environmental and even geopolitical perspectives can

5 For example, the economic perspective provides answers to the optimal extent of the use of market-based instruments as compared to a planning approach, whereas the business perspective would
provide additional insight that need to be taken into account and balanced against each other by policy makers.

However, it should be noted that the current document is addressed to national policy makers and their staff in national agencies that are working toward the realization of an Asian Integrated Transport Network. Developing such a network is an endeavour that will take many years, that requires significant financial commitments, and that is of salient interest to a wide range of stakeholders. That is why the study focuses on policy messages and takes an inter-disciplinary approach. The authors have tried to make the study as accessible as possible, by simplifying terminologies and by avoiding the use of quantitative and mathematical relationships.

Instead, we focus on concepts and selected issues that are illustrated through “stylized facts” and illustrative data. In this way, we provide a general picture of current trends and potential alternative future developments, both in transport infrastructure development and related regional cooperation in the Asia and the Pacific. This approach is also least constrained by the significant data deficiencies for many ESCAP member countries.

While the focus is on regional issues, discussions of subregional and national specificities are also included. However, in contrast to the complementary subregional ESCAP studies mentioned earlier, this study is not a bottom-up study like many other United Nations reports that are essentially built on a compendium of country studies together with a regional synthesis. Instead, we will highlight some essentially regional, international elements of an Asian Integrated Transport Network that are well beyond a simple sum of national elements.

Necessarily, the selection of issues and concepts are somewhat subjective, but it has been guided by the authors’ discussions with practitioners in transport cooperation in Asia over the period of a number of years. In this regard, the authors are indebted to contributions from their colleagues in the Transport and Tourism Division of ESCAP.

Finally, it should be noted that this study draws, inter alia, on the findings and material contained in the following earlier ESCAP reports or staff reports:

- Working paper input of the Transport and Tourism Division for the ESCAP theme study for the Commission in April 2006 entitled “Enhancing regional cooperation for infrastructure development, including that related to disaster management”, November 2005.
- Reports and studies from ESCAP projects, particularly on the Asian Highway and the Trans-Asian railway.
- Data contained in:

\[\text{http://www.unescap.org/tdw/PubsDetail.asp?IDNO=178}\]
\[\text{http://www.unescap.org/tdw/index.asp?MenuName=Publications}\]

- ESCAP Transport and Tourism Division’s GIS system (TTDIS)
- Asian Highway database.
- Project information sheets of the World Bank.

3. Scope

The geographical scope of the study is the “ESCAP region”, which is defined as the area covered by the ESCAP member countries and associate members that are located in Asia and the Pacific (Figure 1). See the inside cover this publication for a full list of countries. The ESCAP region stretches from Turkey in the West to French Polynesia in the East. 3.91 billion people or 62% of the world population live in this region.

Figure 1: Official map of the “ESCAP region”.

8 www.unescap.org/tdtw/statstabs/index2.asp
9 http://www.unescap.org/tdtw/common/TIS/AH/Member%20countries.asp
The study’s focus is on land transport, including road, rail, and dry ports, and their efficient linkages to ports and airports. Ports, shipping, airports and the airline industry are only discussed to a limited extent, as they essentially already form part of a global integrated transport network, in contrast to land transport in many parts of Asia.

While all types of transport networks and their inter-linkages are being taken into account, mainly international transport aspects are discussed. In particular, the international land transport backbone network is covered in more detail, which consists of the Trans-Asian railway, the Asian Highway and the corridors identified in the Euro-Asian linkages projects. Most discussions are on freight transport, but needs of passenger transport issues are also taken into account. The presented vision of an Asian Integrated Transport Network includes both freight and passenger transportation. It also requires integration with other physical networks, particularly in communications, as well as with non-physical networks.

While the Pacific islands will form an integral part of a future Asian integrated transport network, their situation is special due to very long distances and low overall population densities in the Pacific. To do justice to the special needs of Pacific island countries, a separate study should be undertaken. Essentially, this study focuses on inland sites of Asia.

It should also be noted, that while the study acknowledges the importance of geopolitical considerations related to international transport, these issues are not explored further. Similarly, the possible peace dividend of further regional integration through international transport integration is not subject of the current study that focuses on technical, social and economic aspects.12

Finally, the study explores possible developments over the next 25 years, i.e., the period from 2005 to 2030 with a mid-term point for benchmarking in 2015, the latter coinciding with the time frame for the Millennium Development Goals of the United Nations.

C. Outline of the study

The next chapter introduces and defines the concept of network integration.

Part two illustrates the most relevant concepts and issues that need to be taken into account by policy makers working toward an Asian Integrated Transport Network. Chapter III explains the two-way relationship between infrastructure and globalization, while Chapter IV summarizes the role of infrastructure in economic development and poverty reduction. Chapter V introduces and illustrates the concept of networks as a tool to identify major issues related to international infrastructure cooperation and integration. Chapter VI relates the concept of networks to that of “regionalization” (i.e., private sector driven regional cooperation) and uses it to identify issues in developing inter-country infrastructure networks and barriers to effective cooperation and integration. Chapter VII discusses recent trends and issues in “regionalism” (i.e., state-driven regional cooperation) to improve connectivity in Asia. Chapter VIII

identifies major systemic risks related to increased regional cooperation and integration.

Part three provides selected international examples in intermodal infrastructure and services (Chapter IX), as well as cross-border facilitation and transit for landlocked developing countries (Chapter X).

Part four extending international production networks to inland sites in Asia (Chapter XI), and related investment needs and financing options (Chapter XII).

Part five explores the way forward. Based on the analysis in the preceding chapters, Chapter XIII suggests long-term policy strategies, programmes and selected activities for regional cooperation in the area of infrastructure in Asia and the Pacific, with the ultimate goal to support development and to promote greater equity through better connectivity. Chapter XIV lists selected, ambitious suggestions for future regional cooperation (“institutional regional mechanisms”) that could be promoted in Asia and the Pacific in the next 25 years.

The Annexes include more detailed information about current regional and subregional cooperation in transport infrastructure development.

II. NETWORK INTEGRATION

A. Introduction

The “story” of globalization is essentially one of technological change coupled with the development and organization of interacting physical and non-physical networks designed to take advantage of the change.

This observation is reflected in the terminologies currently used for various economic and social activities. Today we talk about fragmented international and regional production networks, which in turn are facilitated by logistics systems that are designed to ensure the efficient flow of goods, services, and information through a network that starts at the point of origin of raw materials to the point of consumption of the final product and back again (in the case of repairs, recycling or disposal). Integral components of the logistics systems are the transport networks that ensure the physical movement of goods and the communications networks that ensure the timely flow of information. To varying degrees, customers, commercial entities and public sector agencies are connected to communications networks for various purposes including tracking of the movement of goods and the performance of various tax, regulatory and security functions. In addition, there are many formal and informal networks and clusters that interact with these networks and each other. These include sales, banking, business-men, small and medium sized enterprises (SMEs), researchers, labour unions, non-governmental organizations (NGOs), civil society and community based organizations (CBOs). In fact, one of today’s principal communications networks, the Internet, is providing the opportunity for interested parties to form any type of governmental, business or social network.

One of the keys to “success” of networks is their integration. This applies not only to interconnection and interoperability of physical networks in the same sector (for example, sea transport to land transport or rail transport to road transport) but also the interlinking of physical and non-physical networks (for example, international production networks and the information flows of logistics systems).
In other words, one might say that what is often termed as “globalisation” is only the “tip of the iceberg” (Figure 2). Globalization itself is driven by the integration of all kinds of networks, leading to seamless, fast and affordable connections and effectively an extended market size which allows for a higher level of international specialization. International production networks are the result of the integration of physical and non-physical networks.

Despite the popular use of the term “integrated networks” by national and international policy makers, experts and bureaucrats alike, there appears to be no generally accepted definition. This is particularly the case in the transport sector.

B. Integrated Transport Networks

The term “integrated transport” appears to have been developed separately in the freight transport community and the urban transport community. This section discusses the various concepts related to integrated transport, the importance of integration to the development of “sustainable transport” and the importance of developing mechanisms to assist policy makers, managers of unimodal transport systems and integrated transport operators in ensuring the efficient operation of transport infrastructure and services. Having considered these concepts, the Section concludes by providing a working definition for of an “integrated transport network” for the purpose of this study.

13 This relationship between efficiency, division of labour and market size has been famously documented already by Adam Smith (“That the Division of Labour is limited by the Extent of the Market”, Chapter 3 of “An Inquiry into the Nature and Causes of the Wealth of Nations”, 1776, http://www.adamsmith.org/smith/won-b1-c3.htm).

14 A search with Google on 29 November 2005 resulted in roughly 550,000 hits for “integrated transport network”. Yet, the retrieved documents only include vague indications of what is meant by the term. A comprehensive, satisfactory definition is lacking.
1. Integrated freight transport

In the context of freight transport, a number of related terms are used, that have a somewhat more restrictive meaning, namely, multimodal transport, intermodal transport and combined transport.

(a) Multimodal transport

A prominent definition of “multimodal transport” used by United Nations Economic Commission for Europe (ECE), the European Conference of Ministers of Transport (ECMT), and the European Union’s European Commission (EC) is “the carriage of goods by two or more modes of transport”.

An early definition of “international multimodal transport” is contained in Article 1 of the United Nations Convention on International Multimodal Transport of Goods of 1980: “‘International multimodal transport’ means the carriage of goods by at least two different modes of transport on the basis of a multimodal transport contract from a place in one country at which the goods are taken in charge by the multimodal transport operator to a place designated for delivery situated in a different country.”

(b) Inter-modal transport

The concept of inter-modal transport goes a step further than multimodal transport, in that it implies the use of a standardized loading unit, vehicle or “container”, that can be transferred from one mode of transport to another.

The United Nations Economic Commission for Europe (ECE), the European Conference of Ministers of Transport (ECMT), and the European Union’s European Commission (EC) define inter-modal transport as follows\(^\text{15}\): “The movement of goods in one and the same loading unit or road vehicle, which uses successively two or more modes of transport without handling the goods themselves in changing modes. By extension, the term ‘intermodality’ has been used to describe a system of transport whereby two or more modes of transport are used to transport the same loading unit or truck in an integrated manner, without loading or unloading, in a [door to door] transport chain”.

In this sense, inter-modal transport is hardly a new concept\(^\text{16}\). Modern inter-modal transport was born with the emergence of railways. On the first railways in the 1830s, horse-drawn carriages were detached from their wheel and loaded onto flat wagons or attached to bogies, to save travellers the trouble of changing from carts to wagons. Unitization or “containerization” on railways was practised in France even before the first world war, where 2 x 2 x 2 metres wide wooden boxes were used which were called “cadres”. At the same time, an early road-rail-sea tri-modal transport service was operated between Paris and London through Calais and Dover. In 1933, these international ventures led to the establishment of the International Container Bureau. But, of course, “containerization” in the modern sense received its overarching importance only during the 1970s and 1980s, when the ISO standardized container was finally used widely in international trade of manufactures.

The underlying principle of inter-modal transport is that the seamless movement of freight occurs from one mode of transport to another during their delivery. Three types of intermodal land transport movements commonly found within the ESCAP region are illustrated in Figure 3, namely road-to-port, road-to-rail-port and road-to-rail-to-road.

The Office of Intermodalism within the United States Department of Transportation defines inter-modal transport from a business perspective and explicitly takes the network issues, competitive and environmental aspects into account:

"The concepts of "intermodalism" have been applied by the freight industry for many years to provide the shipper with the most efficient movement of goods for the best value. The same concepts that work for freight have broad applications to all types of transportation. In its simplest terms, "intermodalism" covers all of the issues and activities which may affect or involve more than one mode of transportation. It has several aspects:

Connections: the convenient, rapid, efficient, and safe transfer of people or goods from one mode to another (including end-point pick-up and delivery) during a single journey to provide the highest quality and most comprehensive transportation service for its cost.

Choices: the provision of transportation options through the fair and healthy competition for transportation business between different modes, independently or in combination.

Coordination and Cooperation: collaboration among transportation organizations for the purpose of improving transportation services, quality, safety,

18 http://www.dot.gov/intermodal/about_us.html
and economy for all modes or combinations of modes in an environmentally sound manner.”

Due to economies of scale, the development of an inter-modal transport network implies convergence of traffic at a number of “transshipment points”, such as ports, rail terminals, or dry ports, where loads are consolidated. As a result, higher load factors and higher transport frequency can be achieved, especially between terminals. Consequently, the efficiency of the emerging hub-and-spokes network mainly resides in the transshipment capabilities of the transport terminals, which explains the special focus of transport policy makers on the need for efficient inter-modal “interfaces”, including ports, dry ports, inland container terminals, freight villages, etc.

(c) Combined transport

Another related term that is especially used in Europe is “combined transport”. This term is used by ECE, ECMT and the EC to include an environmental aspect into the concept of intermodalism. In essence, this boils down to the use of rail, inland waterway transport (IWT) and maritime transport for long distances, and road for the initial and/or final legs which are to be as short as possible.

In 1992, the EU officially defined “combined transport” as follows 19:

“.... ‘combined transport’ means the transport of goods between Member States where the lorry, trailer, semi-trailer, with or without tractor unit, swap body or container for 20 feet or more uses the road on the initial or final leg of the journey and, on the other leg, rail or inland waterway or maritime services where the section exceeds 100 km as the crow flies and make the initial or final road transport leg of the journey:

- Between the point where the goods are loaded and the nearest suitable rail loading station for the initial leg, and between the nearest suitable rail unloading station and the point where the goods are unloaded for the final leg, or:

- Within a radius not exceeding 150 km as the crow flies from the inland waterway port or seaport of loading and unloading.”

In addition, the term “combined transport” has been used to include also social, economic and regional considerations, in addition to the environmental ones.

2. Integrated passenger transport

In the context of passenger transport, the concept of integrated transport was implemented mainly in urban areas, even though it has more recently been featured also on national and international scale. This Section illustrates the concept of integrated urban public transport.

A major direction of development in improving urban public transport is the integration of services provided by multiple operators often using different modes over a wide geographical area. Successful integration programmes can allow seamless travel between two points without the necessity of making separate payments for each segment of the trip and reduce the hassles of transfer at intermodal terminals or

transfer points. Integration can make fare cost cheaper and journey time shorter for users. As integration can improve the level of service considerably, an increase in public transport patronage can be expected following integration of public transport services.

Many cities in the region with advanced form of transportation such as Singapore and Hong Kong, China have successfully integrated their public transport services provided by multiple operators using different modes, such as the metro and bus systems. Introduction of smart card technologies for the collection of fare and capturing of real-time travel-related data, has made integration technically far more easier than in the past. It is understood that a number of cities in the region, which have introduced the smart card technology for their public transport systems, are now considering to applying the technology for city-wide integration of their public transport services.

(a) Physical integration

Integration can occur at three levels: physical integration, operational integration, and institutional integration. Physical integration is the lowest level of integration. It refers to the provision of jointly used facilities and equipment. Such facilities may include intermodal terminals, transfer points or stations, transit shelters, park-and-ride facilities, standardized identification symbols and display techniques used by all modes and services, etc. Comfort and safety of transfer passengers is vital to integration of public transport. Special passage-ways, escalators and moving sidewalks can greatly assist passengers in transferring between modes as well as accessing the public transport modes.

(b) Operational integration

Operational integration of services can be considered as the second higher level of integration. It allows matching of modes according to service requirements and rationalization/reorganization of existing services. Faster and high-capacity long-haul modes such as metro and bus rapid transit (BRT) can be used for high-density travel corridors, while low-capacity modes such as buses can be used as feeder to these high-capacity modes. Operational integration can also help eliminate wasteful duplication of service by competing modes and resources can be redeployed where they are better utilized. At this level, operational schedules of complementary modes are matched. Such matching of schedules can greatly reduce wait times at transfer points. Another important feature of operational integration is unification of the fare structure. A single area-wide fare structure can be established to permit users pay at the beginning of the trip and transfer freely between all modes or lines of service covered by the system.

(c) Institutional integration

Institutional integration refers to the creation of an organizational framework within which joint planning and operation of public transport services can be carried out by a number of independent transport operators. Such organizational framework, however, can take different forms. There can be an organizational arrangement for setting a joint tariff and collection and distribution of jointly collected revenues. This type of arrangement works well where partners provide complementary services, do not compete but rather make end-to-end connections. The partners can go beyond this revenue collection and distribution by setting up a framework to coordinate routes and
schedules. They can also establish a federated agency and delegate to it powers related to planning, joint facilities, tariffs, revenue distribution and any other matter they consider appropriate. However, when multiple operators are to share common infrastructure facilities to run their services, such as BRT services over a dedicated corridor, a much stronger form of institutional integration is necessary.

3. Integration and sustainability

Apart from facilitating global production, and personal mobility, integrated transport networks support the concept of sustainable transport development. In other words, transport systems that are economically efficient, environmentally sound, safe, secure and socially inclusive.

Over the last two or three decades there have been a number of forces set in motion that are directed towards sustainable transport. Global conferences have all contributed towards increasing awareness and requiring action in the area of sustainable transport. It can also be argued that increased customer orientation, social responsibility, localization including devolution, decentralization and urbanization, and awareness of the health and environmental impact of transport tend to be more of a consequence than a cause of globalization.

Four features of the last two or three decades have highlighted the linkage between integrated transport networks and sustainable transport development.

Firstly, technological change coupled with deregulation and liberalization in the transport and communications sectors have made a significant contribution towards a rapid growth in movement of goods and people. This growth has in turn placed considerable pressures on unimodal transport infrastructure systems and their associated services as well as the modal interfaces between them. The clearest illustration of these pressures are general road traffic congestion, congested road access to seaports and airports, ships waiting for berths outside seaports and air traffic congestion. To date, the solution to congestion problems has been to build more infrastructures by expanding existing unimodal systems, especially roads and highways. Given, however, limited land resources and financial constraints, as well as the health and environmental impacts of road transport, fundamental questions are being asked concerning “business-as-usual” unimodal transport policies. In particular, integrated transport policies that draw-upon the potential benefits of rail transport and mass transit schemes are being considered.

Secondly, there has been a shift away from meeting output and production targets and towards meeting the needs of customers. Focussing on the needs of customers, whether they be intermediate producers or final consumers, requires the provision of efficient and reliable transport services that provide value for money. The search for increased efficiency, reliability and cost effectiveness demands not only improvements in existing systems but also a search for alternative means of providing final outcomes to customers. These alternatives may include increased utilization of railways and inland container depots as part of an integrated freight transport system.

Thirdly, there has been an increased recognition of, and commitment to, social inclusion with a specific focus on addressing the needs of the poor and marginalized communities. Physical access to economic and social opportunities is one of the contributions that transport can make towards this commitment: efficient, reliable and cost effective integrated transport systems provide an even stronger commitment.
Fourthly, there has been increased general awareness of the impact of economic activity on health and the environment, and a more specific awareness of the significant contribution that transport is making to deteriorating health, including traffic accidents, non-renewable energy consumption, and various forms of pollution. Integrated transport offers the opportunity to considerably reduce these negative impacts of transport through, for example, the utilization of more energy efficient and less polluting forms of transport.

4. Integration and efficiency

Unlike a good novel, a luxury cruise, amateur sailing or an “orient express”, transport is mainly concerned with “getting there”, not the journey. Stated alternatively, demand for transport is in general a derived demand: it is not required for its “our sake”. It is demanded because of the economic and social opportunities at each end of the trip.

Consequently, while integrated transport incorporates different transport modes, the transfer between modes and the integration with other physical and non-physical networks, there is a need to consider transport outcomes as distinct from specific modal outputs.

This consideration is in line with the above observation that there has been a shift away from meeting output and production targets and towards meeting the needs of customers.

Transport and other associated networks add value by creating time and place utility. In marketing terms, the essence of these two utilities is getting the “right items” needed for consumption and production to the “right place”, at the “right time”, in the “right condition” at the “right cost”. In other words, producers are looking for transport services that are frequent, reliable, punctual, and secure and that offer tracking services, competitive transit times and costs, regardless of the mode of transport or route taken to move the goods between places. Passengers are also looking towards transport services with similar qualities as well as dimensions such as comfort, ambience, and ease of transfer within and between modes.

The key element in these qualities is that it is a transport service that is being sought as an outcome, not a trip on a ship, train, boat or plane. The focus on transport services allows for optimization of the efficiency of the whole transport system, not just its individual components such as roads or ports. It allows for choice between transport modes, service providers, their scheduled or other services and a policy choice taking into account environmental and social impacts.

On the one hand, efficiency measures are measuring progress in the performance of the transport system which is, of course, the ultimate objective of an integrated transport network. In particular, network integration extends the “effective” market size and therefore provides new opportunities for division of labour taking advantage

20 Broadly defined as being the satisfaction of needs and wants of consumers and producers.

of economies of scale[^22]. On the other hand, efficiency measures are actually good measures of transport network integration in its various dimensions.

Efficiency measures of an integrated transport network relate resource inputs to intermediate or final outputs. They measure system performance and progress in terms of network integration.

Like other networks, transport networks consist of links and nodes. Therefore, in principle, any inefficiencies in, or missing links or nodes can affect the overall efficiency of the network (see Part Two for a detailed discussion). Some important network effects need to be taken into account at that level when assessing the overall system efficiency and the risks of network “failure”. However, much of the dynamics of the system can be assessed by separately looking at efficiencies at higher, more aggregated levels (either for the national level or a particular subnetwork):

- **Physical transport network efficiency**: The efficiency of the physical transport network as a whole is determined by the efficiencies of the various individual transport modes, their intermodal integration and the modal choices actually available.
- **Service delivery efficiency**: (given a network system)
- **Efficiencies in environmental and social terms**: (e.g., eco-efficiency and allocative efficiencies)

Total integrated transport network efficiency is composite indicator determined by efficiencies at the three levels mentioned above.

To date, unimodal efficiencies are often expressed as technical efficiencies (or technical productivity) which refers to the physical relation between resources inputs and transport outcomes.

However, technical efficiency cannot directly compare alternative interventions, where one intervention produces the same (or better) transport outcomes with less (or more) of one resource and more of another. Therefore, total physical transport network efficiency as well as service delivery efficiency is typically expressed in terms of productive efficiency (or economic productivity). Productive efficiency refers to the maximization of transport outcome for a given cost, or the minimisation of cost for a given outcome. The use of productive efficiency measures enables the assessment of the relative value for money of interventions with directly comparable outcomes[^23].

Productive efficiency cannot address the impact of reallocating resources at a broader level, e.g., from urban to rural areas, because the transport outcomes are incommensurate. The concept of allocative efficiency also takes account of how the transport outcomes are distributed among beneficiaries. Allocative efficiency is achieved when resources are allocated so as to maximise the welfare of the

[^22]: Inframarginal economics, essentially a formalized resurrection Adam Smith’s concepts, see also footnote 13.

[^23]: It should be noted, however, that, to-date, economic productivity measures unfortunately only exist for few ESCAP member countries (see, in particular, the 60-Industry Database of the Groningen Growth and Development Centre).
"community". The concept of allocative efficiency is used for measuring the achievement of environmental and social objectives as well as the total network efficiency from the perspective of various users ("consumers").

As a result, a set of performance and efficiency indicators are need for monitoring progress towards an Asian Integrated Transport Network. Yet, much of these data are not regularly collected by many ESCAP members and associate countries, and where they are collected they are not systematically shared among policy makers in the region. It is, therefore, of paramount importance to define a minimum set of efficiency indicators that should be shared and monitored by Asian policy makers.

5. Integrated transport

Integrated intermodal transport has been a major policy issue of concern to governments in Europe and North America for the past two decades. More recently, this approach has also been adopted by an increasing number of countries in the Asia and the Pacific region.

A current definition used by a local government in the UK is “The planning, provision and operation of different modes of transport in such a way that journeys can be made as efficiently as possible and minimising the need to use the private car.”24. This is somewhat close to a combination of the definitions of inter-modal transport and combined transport.

In the context of the transport system as a whole, including both freight and passenger transport, the UK Commission for Integrated Transport (CfIT) “takes a broad view of integrated transport policy and its interface with wider Government objectives for economic prosperity, environmental protection, health and social inclusion. Physical integration - the principle of ensuring transport modes operate in conjunction with one another, is just one vital element of the bigger transport picture.”25 It should be noted that the CfIT is an independent body advising the UK government on integrated transport policy. Again, this view of an integrated transport network emphasizes an ambitious combination of the concepts of inter-modal transport and combined transport both for freight and passenger transport.

Similarly broad views of integrated transport networks have been formalized by other OECD governments. Examples include the European Union’s Europe 2010 vision, as well as the United States’ Intermodal Surface Transport Efficiency Act of 1991 and its follow-up initiatives.

A number of developing countries in the Asia and the Pacific have adopted similar approaches in recent years. A major difference is in (a) the stronger emphasis on promoting the adoption of new technologies, international standards and the building of national research and operations capacities; and (b) the promotion of market-oriented management methods. For example, the Chinese Tenth Five Year Plan and 2015 Long-term Programs of the Railway Scientific and technological development 26 specifies objectives and key tasks for the major role that Chinese railways are envisaged to play in the development of a national integrated transport system. It emphasizes the building of strategic research and development capacities in high-

24 www.tewkesburybc.gov.uk/media/pdf/h/1/tblp_glossary.pdf
25 http://www.cfit.gov.uk/
26 Source: Ministry of Railways, China.
speed freight and passenger railways including rolling stock (“technology self-reliance”). It covers the construction of new networks, improvement of efficiencies, the development of IT and new management methods, social and safety objectives, as well as environmental protection issues.

The new approach suggested in the case of India explicitly mentions the aim of following the Chinese example and foresees the development and integration of dedicated rail corridors, multimodal service, high-speed services for freight and passengers, integration with urban transport systems, and highlights the major environmental benefits from the pursuit of a national integrated transport system.27

The concept of inter-modal connectivity has been promoted in Asia and the Pacific, through ESCAP’s Asian Land Transport Infrastructure Development project since the early 1990s. More recently, one of the outcomes of the “Seoul Declaration on Infrastructure Development in Asia and the Pacific” of November 2001 was the agreement by Ministers that they considered it essential that “Governments take a leading role in more effectively integrating the different forms of transport in order to develop sustainable inter-modal transport systems that deliver efficient domestic transport services and at the same time provide access to international markets and wider hinterlands”.

Following this line of thought, we suggest to adopt the following working definition of an “integrated transport network” for the purpose of this study:

An “integrated transport network” is a network:

a) where a coordinated transport service is provided through the network by multiple operators using one or multiple modes that allows efficient transfer between modes and charges a single tariff (i.e., the network shows physical, service, scheduling and tariff integration); and

b) that is designed to reflect a broad view of transport policy that also takes into account wider government objectives for economic prosperity, environmental protection, health and social inclusion (so-called “sustainability elements”).

PART TWO: CONCEPTS AND ISSUES

III. GLOBALIZATION AND INFRASTRUCTURE NETWORKS

Domestic and international infrastructure connectivity in Asia and the Pacific has increased to previously unprecedented levels over the past two decades, a period of time that has corresponded to the latest wave of globalization. This is no coincidence, as advances in network infrastructures, such as transport and communications, have always fueled waves of globalization in the past. Equally, globalization has been a dominant force that has shaped development trends in Asia. This introductory chapter makes a number of observations on the relationship between globalization and infrastructure that set the background for the following chapters.

A. The East Asian Miracle

In Asia, the process of globalization gathered momentum in the mid 1980s, when a number of countries of the region started to lower their barriers to trade and investment. This was particularly the case in the newly industrializing economies (NIEs) and ASEAN, which introduced outward looking structural reform policies that moved away from import-substitution and towards export-oriented production. These policies included liberalization of trade and foreign direct investment (FDI) as well as deregulation of domestic economic activities, the aim being to stimulate economic growth.

The impact of these policies is often referred to as the “East Asian Miracle”. FDI inflows increased twelve-fold and East Asian exports increased fivefold between 1985 and the “East Asian Crisis” in 1997. Annual economic growth in these economies during this period exceeded that of most other economies in the world.

B. Contribution of Networks to Globalization

1. Physical Networks: Transport, IT and communications

Major infrastructure such as roads, railways, ports, airports, canals, telephone lines, the Internet, mobile networks, pipelines, and electricity grids, are or form part of a physical network. These networks have played a significant role in the globalization process.

As in the past, the principal driving forces behind the current phase of globalization are lower barriers to trade and investment, lower transport costs, and lower information technology costs. The noticeable reduction in transportation and communication cost has facilitated the division of the productive process, allowing participation by a larger number of geographical locations according to the advantages that each one contributes to the value added chain. This fact has broadened the opportunities so the individual economies can participate more actively.

28 Hong Kong, China; Republic of Korea; Singapore; and Taiwan, Province of China.
29 Indonesia, Malaysia, Philippines and Thailand.
30 Hardware, software and organizationware.
in the international production networks administered by large multinational companies.31

It should be noted that there have always been strong complementary linkages between transport and communications32. Since both are two-way networks, they exhibit similar characteristics including significant externalities, thus reinforcing themselves and each other in the process. This is somewhat different from the typical one-way energy and water networks, and may be one of the reasons, why these have not been as prominent in the discussion of globalization as transport and communications.

2. Non-physical networks

The physical networks outlined above are not only interlinked to varying degrees, but they are also closely related to many non-physical networks such as formal and informal communications channels within and between organizations. These non-physical networks are often of a commercial or social nature. Combinations of these physical and non-physical networks form more complex networks such as the international production networks. This simple insight can go a long way in clarifying and offering solutions to major infrastructure issues33. In short, there is a clear need for various non-physical networks to strengthen and interlink the physical networks that could be argued to be the “backbone infrastructure” of globalization.

3. Mixed networks and regionalization

Mixed networks are systems that consist of strongly inter-linked physical and non-physical networks. Examples of mixed networks such as logistics and regional production networks have created a largely market-driven form of regional economic cooperation that is commonly referred to as “regionalization”. They are a major characteristic of the latest wave of globalization.

(a) Logistics

In parallel with the discussion on “globalization”, considerable attention has been placed on concepts such as “logistics management”, and “supply threads”. These concepts are about the efficient flow of goods, services and information from the point of origin of raw materials to the point of consumption of the final product and in some cases return for repairs or maintenance, disposal and recycling, including all the intermediate planning, locational, implementing and controlling decisions.

Prior to the relatively recent changes in transport and information technology, today’s networks and chains consisted of unconnected subnetworks and subchains. The recent developments in transport and information technology have facilitated the linking together of these subnetworks and subchains. As a result, information can be passed from point-of-sale through the network or chain to factories. Policies and

32 For example, Gruebler (Global Change, Cambridge University Press, 1993) shows that transport and communications volumes in France have been growing at the same, almost constant long-run rate for the past 200 years.

33 Note that one may to look at networks in time and/or space. This paper discusses paths both in time (e.g., scenarios for strategy building), and in space (e.g., geographical paths from A to B through a network).
inputs themselves are bound together in networks, whether they be social, operational, facilitatory or physical networks which in turn interact or are linked together to form the overall chain or network. These developments in logistics are at the heart of the “division of the productive process” and “regional production networks” (RPNs), which are the topic of the next subsection and also Chapter XI.

(b) FDI and regional production networks (RPN)

One of the features of FDI was that the multinational corporations active in the region established factories (in different countries) specializing in the production of specific components of finished goods. As a result, regional production networks (RPNs) were formed which have been a major reason for increased intra-industry trade in the region. An example of one of these networks is in the automobile industry of South East Asia. In the Toyota supply chain, Thailand focuses on the production of diesel engines, Malaysia on steering gear, Indonesia on engine blocks and the Philippines on transmission. It should be noted that this so-called “intra-product” trade still constitutes less than a third of world trade in manufactures, which implies a large scope for further expansion. This process of increased specialization, interdependence and integration, which is at the heart of globalization, has reinforced a largely market-driven form of regional economic cooperation, or “regionalization”.

4. Regionalism: Government networks to reduce the risk of marginalization

In practise, it has become increasingly apparent that “regionalization” needs to be complemented with a similar collaboration among governments, that often referred to as “regionalism”, in order to address the many social, economic and political inter-country challenges.

In particular, there is a need for policy intervention in the land transport sector. In this sector, deep concerns have been voiced that hinterlands, regions of countries, and land-locked countries, located far away from the centres actively participating in regional production networks, will be marginalized. Consequently, it is also recognized that “The important question for each nation is how to make the best of the advantages and mitigate the negative impacts of the process”.

In this respect, there is broad agreement that “In a period of growing global economic interdependence, regional cooperation offers Asia-Pacific countries an effective vehicle for promoting sustainable development.”

Whether one adopts a general approach that improved infrastructure and related services facilitate economic growth, an approach that links infrastructure and

34 It should be noted that, of course, almost all commercially-driven forms of regionalization are complemented by some form of regional government cooperation. For example, some might argue that the “Toyota supply chain” was realized through an ASEAN industrial complementation scheme and AFTA tariff liberalization which were both commercially and government-driven. A similar case could be argued for the Singapore – Johor (Malaysia) – Riau (Indonesia) Growth Triangle (SIJORI) where the three regions have pooled their human and natural resources in order to attract new investors.

globalization to growth, or draws upon experience of policies adopted by the more
dynamic Asian economies, it is generally agreed that regional economic cooperation
in infrastructure offers a way forward for countries of the region to address such
issues as market access, economic growth, marginalization and poverty reduction.

Marginalization has been one of the factors contributing to a large number of
bilateral and multilateral agreements, organizations and programmes particularly at
the subregional level. Such a “proliferation” of heterogenous agreements calls for
increased importance being placed upon regional coordination and harmonization.
“Facilitating” such “concerted action”38 of the governments of Asia and the Pacific
and the “strengthening of economic relations of these areas [Asia and the Pacific]
both among themselves and with other countries of the world”38 has been a major part
of the mandate of the United Nations Economic and Social Commission for Asia and
the Pacific (ESCAP) since 1947.

C. Conclusion

There are four major conclusions from the role of infrastructure in the
globalization process that will guide discussions throughout the following chapters.

Firstly, the network concept is helpful in understanding the role of infrastructures
in the current phase of globalization. Physical networks in transport and
communications are closely interlinked with each other and to non-physical networks,
combinations of which form more complex networks such as the international
production networks.

Secondly, physical networks should be analyzed together with non-physical
networks. The commercially-driven form of regionalization (and RPNs) needs to be
complemented with regional governmental collaboration, in order to address the many
inter-country challenges.

Thirdly, land-locked countries, certain regions of countries, hinterlands located far
away from the centres actively participating in the regional production process, face
the risk of marginalization.

Fourthly, there has been a proliferation of overlapping bilateral and multilateral
infrastructure-related agreements, which highlights the increased importance of
coordination and harmonization at the regional level.

IV. NETWORK INFRASTRUCTURE, DEVELOPMENT AND POVERTY

A. Productivity and long-run growth

It is an indisputable fact that infrastructure development and economic
development have always been closely intertwined. While a certain rate of
infrastructure development is clearly needed to “support” a particular rate of
economic development, it has remained controversial as to whether an infrastructure
supply-oriented approach can actually accelerate development. The confusion has
largely arisen from the fact that infrastructure \textit{per se} is almost without exception a
necessary but not sufficient condition for development.

38 Terms of Reference of the Economic and Social Commission for Asia and the Pacific.
Most of the East Asian economies, that have been growing rapidly in recent decades, have followed a supply-driven approach with massive investments in infrastructure well ahead of demand. However, these correlations do not necessarily imply a causality. Whether infrastructure supply-oriented policies actually foster long-run growth appears to depend on many factors, including the development stage of a country, the status of industries that rely most heavily on infrastructure and the extent to which non-physical supporting networks exist.

Van Duijin and others have documented how both political and academic attention as well as investments in infrastructure for the purpose of promoting long-run growth have changed like waves over the decades. In the case of Europe and the U.S., the most recent wave of massive infrastructure investments particularly in highways and the maritime sector took place in the 1950s, 1960s and early 1970s, until huge overcapacities became obvious. Not surprisingly, those years have seen interesting literature on the role of infrastructure in economic development (see in particular Nurkse’s “vicious circles of poverty”, Hirschmann’s “Social Overhead Capital” and the concepts of “balanced and unbalanced growth”).

B. Poverty reduction

1. **Vicious circles of infrastructure access**

Since the mid-1990s, development banks and donors have increasingly focussed their attention on direct interventions for poverty reduction, as the “trickle-down” effect of infrastructure development alone was considered insufficient in terms of the results.

Despite some popular scepticism, there are obvious direct poverty reduction impacts of infrastructure development. For example, Figure 4 illustrates a typical vicious circle of lack of access to transport facilities and services, which can be turned into a virtuous cycle through infrastructure development. In turn, this vicious circle implies that even direct poverty reduction interventions will be unsustainable in the long-run, if it is not supported by sufficient infrastructure development.

39 See also ADB’s earlier paper comparing investment in infrastructure in Japan and the Republic of Korea over the past century.

Figure 4: Vicious circle of lack of access to transport facilities and services

Sometimes the vicious circle of lack of access depicted in Figure 4 is taken further to include information flows, networks and related other factors. Since this amounts to taking the concept of international logistics to the local level, this is sometimes referred to as domestic logistics. To date, surprisingly few activities of governments and international organizations have tried to promote integrated transport and logistics at the domestic level.

2. Millenium Development Goals

The principal international mandate governing activities at the national, subregional, regional and global levels is the Millenium Declaration 43 and the associated Millenium Development Goals (MDGs). Under the goals, United Nations Member States have pledged, by 2015, to: eradicate extreme poverty and hunger; achieve universal primary education; promote gender equality and empower women; reduce child mortality; improve maternal health; combat HIV/AIDS; ensure environmental sustainability; and to develop a global partnership. Surprisingly, there is little, if any, mention of how development of infrastructure facilities and services can contribute to achieving these goals. Consequently there is a danger that the role of infrastructure interventions in poverty reduction is neglected by omission.

In August 2002, however, the United Kingdom’s Department for International Development (DFID) published a paper entitled “Transport’s Role in Achieving the Millenium Development Goals” 44. This paper went through each of the Goals and highlighted the contribution that transport could make to their achievement. In its conclusion it effectively inverted the question “what is the contribution of transport to achievement of the MDGs?” and asked “can the MDGs be achieved without transport interventions?” The clear answer is “no”. A similar argument could be made for

43 Ref. Millenium Declaration.

information flows, including aspects of freedom of information as well as the underlying tools or networks for information exchange.

3. Sectoral Issues

(a) Transport

There is ample evidence that efficient transport infrastructure facilities and services are a key pre-requisite for sustainable economic growth and poverty reduction. The efficiency of the transport system depends on many factors, including technology and institutional change, regulation, business environment, human resources, and even geographical factors. Major efficiency improvements in international transport can be traced back to scale economies in containerization and seaports, as well as to applications of modern ICT.

Inter-country land transport has received less attention than maritime transport in Asia and the Pacific. For various historical reasons, land transport networks in countries with maritime coastlines are oriented towards their major seaports. This lack of connectivity between land transport networks of neighboring countries in Asia contrasts markedly with the situation in Europe and other parts of the world. It is also a serious disadvantage for landlocked countries. Better connectivity leading to lower transport costs would enhance export competitiveness and reduce the costs of imports.

(b) Information and Communication Technologies (ICT)

There is evidence that the application of modern ICT leads to significant productivity gains. However, these gains take sometime to emerge. As with other infrastructure in the past, productivity gains usually emerge only after a critical level of market penetration for the infrastructure has been reached. This is a serious predicament for the least developed countries (LDCs) as they cannot yet afford the high levels of ICT usage that are needed to significantly gain from ICTs as well as to participate in the modern international production networks.

Secondary regional Asian Internet hubs have emerged in Japan; the Republic of Korea; Hong Kong, China; Singapore; and Australia to complement the larger, global hubs in Europe and North America. Developing countries, least developed countries and most transition economies can only benefit in such a hub-and-spoke system through bilateral and regional cooperation. Trends to such cooperation have become increasingly visible in the region. For example, Thailand has expanded data and communication services into Cambodia and Lao People’s Democratic Republic, through sharing agreements. Furthermore, there are regional efforts to create a regional high-capacity Internet backbone (both fixed and satellite-based) for Asia.

Issues of international transit and interconnection in communications are very similar to those in transport and pose a serious challenge to landlocked countries. It should also be noted that despite the prominent role of the private sector in ICT infrastructure, cross-border connections and issues (e.g., international interconnection pricing and standards) are a game of governments rather than that of the private sector in Asia, which is similar to the situation in cross-border transport.

(c) Energy

The noticeable reduction in transport and communications cost has opened-up the possibility for a larger number of geographical locations to fully participate in the
international production process. Yet, the availability of cheap and reliable energy at specific locations has been a crucial factor in attracting FDI to specific locations, i.e., energy availability has a “pull effect”. In addition, energy is a fundamental input to the transport and communications sectors. Consequently, its availability and cost will influence the contribution that they make to the globalization process and economic development in general.

C. Conclusion

There are five major conclusions from the role of infrastructure in development process, long-run growth and poverty alleviation that need to be taken into account in designing strategies and programmes:

Firstly, the East Asian model of long-run infrastructure supply-oriented development has proven highly successful under certain circumstances, particularly where non-physical supporting networks were strong.

Secondly, direct poverty reduction interventions will be unsustainable in the long-run, if they are not supported by sufficient infrastructure development. This simple fact appears to have received insufficient attention by governments in recent years.

Thirdly, a lack of connectivity between land transport networks of neighboring countries in Asia is a serious disadvantage for landlocked countries in Asia.

Fourthly, the least developed countries are trapped in a vicious circle, as they can neither afford ICT infrastructure to the extent needed for significant economic gain nor to participate in the modern international production networks.

Finally, due to the Internet’s hub-and-spoke network system, most developing countries and transition economies can only benefit from it through bilateral and regional cooperation.

V. GENERAL NETWORK CHARACTERISTICS

One of the principal themes highlighted in this paper is the concept of networks. This Chapter considers further the concept of networks and discusses some of the general characteristics of infrastructure networks that influence or condition their integration as well as negotiations of regional and subregional agreements. In doing so, it provides the background for formulating strategies, programmes and activities for network infrastructures.

A. Physical networks

1. Links and nodes

The infrastructure sectors being considered within the context of this paper, including transport, ICT and energy, are all networks, consisting of links and nodes. A network is a system, the performance of which depends, to varying degrees on the performance of individual links and nodes. One of the features of a network is that any inefficiencies in, or missing links or nodes can affect the overall efficiency of the network.

45 Similarly, water transportation networks are increasingly emerging as a major issue for the coming decades. However, they are not included in this paper’s discussions.
Depending on the characteristics of the network, “failure” of “critical” links or nodes can shut down the whole network (“Bracers effect”). The resulting “system” failure is discussed in reliability theory. An image of what happens is that of the nuclear meltdown at the Three Mile Island nuclear reactor, which occurred due to the failure of a single component.

“Closure” of one link or node does not need to lead to failure, but it will reduce choice. In the context of negotiation of issues related to cross-border land transportation, for example, closure of a link can substantially reduce bargaining power.

It should be further noted that, while the term “network” in economics was originally used in “network externalities” to refer to benefits that accrue from connections of physical networks such as telephones or railway lines, the term was extended to include value created by networks of users sharing compatible products and standards. In fact, as long as there are significant complementarities between types of goods in a non-network industry, network externalities will play an important role. For example, the sales of ice-cream will influence the price and sales of waffles.

2. Linking sub-networks together

The linking together of two formerly unconnected or weakly connected national or international sub-networks is the principle objective of regional cooperation in infrastructure (Figure 5). This subsection briefly discusses the interconnectivity and interoperability issues associated with the establishment of such linkages.

![Figure 5: Linking two subnetworks.](image)

46 Cut the bracers and the trousers fall down…

47 The “(in)famous” nuclear accident at the Three Mile Island light-water reactor occurred in Middletown, Pennsylvania, on 28 March 1979. “A simple interpretation of the cause of the accident is that it was initiated by an equipment failure, a valve that failed to close, compounded by several operator errors” (see http://www.magma.ca/~jalrober/Chapter8e.htm).

(a) Interconnectivity

The term *interconnectivity* simply refers to whether sub-networks are actually connected. For example, different rail gauges require special technical solutions to allow physical interconnection.

In this context, the difference between *connectivity* and *accessibility* should be noted. While connectivity is an attribute of a network and measures the minimum number of links needed to reach all nodes from all other nodes, accessibility is an attribute of a node and measures the minimum number of links needed to reach all or certain nodes from a specific node.

Interconnection is critical for efficient operation of many network industries, as a relatively small investment in interconnecting two networks can quickly create a much more valuable network (see Metcalf’’s Law\(^{50}\)). From the users’ perspective, interconnection increases the variety of services from which they can choose. From the government’s perspective, it is important to assess the economic and social incentives for rival networks to interconnect so as to expand the range of services\(^ {51} \).

The transportation industry has elaborate arrangements to convey shipments across non-overlapping networks. Even in North America, in the early days, this involved loading and unloading of freight when lines used different track gauges (a situation similar to that of the Asia-Pacific region today). After standardization of track and equipment, interlining agreements allowed rolling stock to travel over contiguous rail networks without transferring shipments.

Similar to the regional situation of fragmented electricity networks in Asia today, in the early days of the U.S. electricity power industry, two standards of power transmission coexisted on disjoint networks\(^ {51} \). While the direct current standard was adopted in urban distribution systems of the U.S.\(^ {52} \), the remainder used the alternating current method that enjoyed a cost advantage in serving the rural and outlying areas. Interconnection between the two systems awaited the development of the rotary converter. It gave power plants expanded access to users and also added to the ranks of generators that could deliver power to the system\(^ {53} \).

(b) Interoperability

The example of the rotary converter in the previous paragraph highlights the fact that interoperability may have to be ensured before some networks can be interconnected. On the other hand, even in cases where networks have been interconnected, they may still lack interoperability. For example, railway networks that are interconnected and that use the same gauge, may still not be interoperable, for example, due to differences in electricity supply or the signaling systems. This is still the case today in Europe for some neighbouring countries, where railway locomotives have to be exchanged at the border.

\(^{50}\) The so-called “Metcalf’s Law” states that the value of such networks is directly proportional to the square of the number of users

\(^{52}\) accounting for about two-thirds of installed generating capacity

In the US, the trucking and rail industries have had to make themselves interoperable, in order to offer shippers end-to-end services. Under the "piggyback system", tractor trailers are loaded aboard flatbed rail cars for the rail portion of their journey, thus ensuring interoperability between road and rail.

Containers are another good example where standards (ISO standards) have supported interoperability of networks of different transport modes and, consequently, have led to large productivity gains.

Technical considerations of interconnectivity and interoperability as illustrated here provide a useful perspective to identify issues in regional cooperation and integration in maintaining and developing inter-country infrastructure.

3. Linking more than two systems (e.g., transit issues)

When more than two systems are linked, more complex issues arise. In the case of transport and communications, probably the most important of these are transit issues. Examples are transit through a third country (road, rail, water, air, communication lines, etc.) and simple right of way issues within a country (different communications network providers, fiber optic cables along railway lines, more than one railway company, etc.).

International transit issues have been perceived as very complex matters, inter alia, due to the complicated distribution of costs and benefits derived from transit. In particular, international negotiations of transit fees, quotas and rights for land transport, air transport, oil/gas pipelines, have often proved long and difficult.

In an economic sense, the issue of transit fees depends on the marginal cost (to the “producer”\(^{54}\)) as well as the willingness to pay (demand) which depends on alternative choices available in the network and their particular characteristics. By definition, sufficient choice for land-locked countries through agreements with all their neighbours is costly. However, most government policies have been geared to maximize choice, in order to minimize the economic and political risks.

Key links and nodes that can limit or reduce possibilities of choice depend on the type of network. Figure 6 illustrates four types of network structures that typically arise in transport and communications. At any point in time, the optimal type of network depends on the specific economics of the links and nodes and government regulations. For example, international commercial air transport and maritime transport (ports) are organized along the hub-and-spoke system. However, the competing budget airlines typically follow the mesh structure. In other words, the hub-and-spoke system is not necessarily the optimal outcome for air transport in general. In fact, the structure which is optimal may change over time. A well documented example is that of the US Internet which changed from a linear set-up in the early 1970s, to a mesh network from the mid-1970s to the early 1990s, and to a hub-and-spoke system ever since due to the Internet’s commercialization. In the hub-and-spoke system interconnection pricing is an important issue due to the powerful position of the “owner” of the hub. A typical example of the tree network is the land transport network of a country with a large hinterland but a small coastline where the major cities and most of the countries’ economic activities are concentrated.

\(^{54}\) This means that the transit country is also a factor.

31
4. Quality and capacity

In practice, it is necessary but not sufficient to ensure interconnectivity and interoperability. As illustrated by Figure 5, if we make changes in our network (e.g., by interconnecting to networks or more users), resulting “traffic” flows will change. And some links will have to be of higher quality and sufficient capacity in order to sustain such changes. This seems very clear in the case of transport, but similarly applies to all other physical networks. For example, in the case of the Internet, providing access to more users without upgrading the Internet backbone (i.e., the salient, high capacity links) would only lead to degrading quality and decreasing utility to all users.

In order to characterize networks in terms of their interconnectivity, interoperability and quality, economists refer to the concept of the “strength of the network”. This includes network characteristics of interconnectivity, interoperability and quality, together with current network size and expectations of future size. These characteristics determine the utility a user derives form the network.

5. One-way vs. two-way networks

There is a clear distinction between two-way networks (e.g., telephones, railroads, the Internet) and one-way networks (e.g., ATMs, television, distribution and service networks). In the former case, additional customers usually yield direct externalities to other customers; in the latter case, the externalities are indirect, through increases in the number of varieties (and lower prices) of components. Most industries involve vertically related components and thus are conceptually similar to one-way networks.

6. From paths to corridors

A path is something like a route on a map. In the network terminology introduced above, it is a set of consecutive links involving different nodes.

Particularly in the case of transportation, corridors rather than paths are the focus of attention for development. Corridors may include only one path/route (e.g., when network density is very low) or may include many alternative paths/routes sometimes even including small distribution networks.

56 To be precise, the three network characteristics are actually compatibility, accessibility and quality. This is a more general terminology that also applies to complementary industries etc.
B. Non-physical networks

All the classifications and issues of physical networks that we just discussed also apply to non-physical networks. In fact, many of these non-physical networks are so closely interrelated with physical networks that it is more instructive to analyze them together.

There are many different types of non-physical networks, including social, economic, political/regulatory, information, knowledge, and environmental networks. For example, regional production networks would not have emerged without similar development of a variety of non-physical networks.

C. Linkages

In addition to classifying network linkages in those relating to physical or non-physical networks, one can look at linkages between networks in the “same” traditional sector (e.g., transport), or linkages between networks in “different” sectors (e.g., between road transport and the Internet).

1. Linkages between networks in the “same” sector

Figure 7: Intermodal transport system.

Figure 7 is an illustration of the various network linkages in the transport sector, including linkages between networks of different transport modes (e.g., shipping, roads, railways) and between various geographical levels (nation, region, locality). This is what is usually referred to as the intermodal transport system. This concept implies that it is useful to look at the networks of all transport modes in terms of a complex intermodal transport network system. An analogous situation exists in data communications where various standards, electronic, optical and all-optical transmission links are integrated into a complex communication system.

2. Linkages between networks in “different” sectors

It appears that an even broader perspective that includes linkages between different “traditional” sectors proves useful. In essence, this approach looks at a complex network, consisting of many networks of various types.

Figure 8: Symbolic illustration of linkages between (physical and non-physical) networks in transport, ICT, trade and governance.

The tetrahedron of Figure 8 symbolically illustrates these linkages between (physical and non-physical) networks in transport, ICT, trade and governance. More dimensions can be added in a similar fashion (for example, FDI, banking, finance, production and sales), but those included in Figure 8 are of direct relevance to regional production networks. Another example of linkages between networks in “different sectors” are documentary credit operations (“letter of credit”) which involve networks in trade, banking, chambers of commerce (certifying letter of credits), shipping and communications. Yet other examples are freight forwarding, international commercial contracts, competition policy and international regulation.

The rapid emergence of new sectors (indicated in colour in Figure 8) on the intersection of traditional sectors is evidence of increasingly strong linkages between the networks of formerly disjoint sectors. For example, the application of ICT in government has not only made government more efficient, but it has actually led to a new concept of governance in its own right, namely e-governance. Similarly, e-transport (ITS, logistics, etc.) has emerged as a field of its own.

These developments do not replace the logic of traditional sectors, but they point to an increased need to fully consider the linkages to other relevant sectors and trends.

Finally, it should be noted that in various disciplines there are some attempts to widen the network perspective even further. For example, in Potts’ evolutionary model of growth economic systems are seen as “hyperstructures”, i.e., multidimensional networks. In this model, economic change and growth of knowledge are in essence a process of changes in connections, such as the creation of more complex organization, new connections or the grouping of those connections.

D. Externalities and network effects

The fundamental idea of network externalities is that “the act of joining a network confers a benefit on all other participants in the network”59. Network externalities may cause markets to fail in allocating resources efficiently. And markets in which incompatible standards compete may tip in the direction of an inferior standard that gains an early advantage.

While the concept of network externalities was developed within economics to analyse market outcomes, there is no reason why these types of considerations cannot be made for nations and their international/regional integration, where a global or regional “regulator” does not exist.

Some economists distinguish direct from indirect externalities, depending on the different type of source of benefit to participants in the network. Direct externalities are those typically seen by two-way networks in transport and communications. For example, the more phone users there are, the more useful it is for another person to become phone user. Direct benefits do not exist for users of one-way networks (e.g., gas pipelines). Indirect externalities are externalities in the network of users of compatible systems60, even if they are not physically connected, such as in the case of computer soft- and hardware.

There is no clear consensus among economists as to the definition of the term “network effects”, as compared to “network externalities”. Some economists61 define network effects in a broader sense than network externalities: Network effects are said to exist when “the net value of an action… is affected by the number of agents taking equivalent actions”. Other economists62 use the term network externalities to comprise all network effects.

E. Conclusion

Physical transport and communication infrastructure and related non-physical “soft”-ware issues are, or form part of, various types of networks. Taking such a comprehensive network view allows one to readily use the tools and terminology from the discipline of economics of networks.

Thus, strategies and programmes stand to benefit, if they are designed to take explicit account of general network characteristics (such as key links and nodes, interconnectivity, interoperability, quality, capacity, network types, paths, corridors, network externalities and effects), since these characteristics already (knowingly or unknowingly) condition negotiations of regional and subregional agreements in infrastructure.

Similarly, strategies and programmes should include explicitly the linkages between physical and non-physical networks including linkages in one sector and between sectors.

60 These users are said to form a virtual network.
61 e.g., Liebowitz and Margolis.
62 e.g., Economides and Klausner.
VI. REGIONALIZATION AND RELATED ISSUES IN DEVELOPING INTER-COUNTRY INFRASTRUCTURE NETWORKS

This Chapter applies the concept of networks introduced in the previous chapter, in order to identify major issues related to inter-country infrastructure networks, including barriers to regional cooperation and integration in maintaining and developing infrastructure. These issues are closely related to the process of regionalization.

A. Regionalization

Chapter III introduced the term “regionalization” to refer to a form of regional economic cooperation that is largely driven by multinationals establishing factories in different countries for specialized production of specific components of finished goods. This process has led to regional production networks in Asia and has been characterized by increased international specialization, interdependence and integration.

Naturally, the possibility for countries to “participate” in these production networks has been limited by the quality of their inter-country infrastructure networks. Land-locked countries, certain regions of countries, and hinterlands located far away from the centres actively participating in the regional production process, face the risk of marginalization.

In fact, regional production networks in Asia have largely been limited to coastal areas due to inefficient inland infrastructure, in terms of network strength including issues of interconnectivity, interoperability, quality and current and future expected inland network size. The major question that this Chapter addresses is under which conditions could this process of regionalization be extended to inland sites. In particular, can improved physical and non-physical networks contribute to “replication” at inland sites of the observed “coastal development”?

B. Issues in developing inter-country infrastructures

In order to answer this question, we use general network characteristics to analyze a possible extension of the regional production networks, that are currently concentrated in the coastal areas, to their hinterlands and even to land-locked countries.

1. Physical networks

(a) Links

To enable inland production centres to emerge, a hub-and-spoke system of transport and communication infrastructure with hubs at inland sites needs to emerge. This requires efficient and high capacity national and international land-based backbone and access networks (road, rail, IWT, communications etc.). In addition to developing new links, rehabilitation and maintenance of existing links remains an important issue for many countries, particularly in countries with economies in transition.

63 For economic reasons, other network types such as the simple tree structure would imply that no veritable inland centre could evolve due to the additional cost factor.
Defining paths (routes) and corridors (e.g., transport corridors and communication backbones) has proved a useful approach to achieving low-cost connections deep into the hinterlands. The corridor approach can be a catalyst for transforming linear networks into tree networks, meshes and finally into hub-and-spoke network systems. It should be noted, that this sequence is what is typically observed. However, this or any other such sequence does not need to exist, nor is the hub-and-spoke network necessarily the most desirable outcome.

Yet, if hubs emerge, accrued network benefits often concentrate around those hubs. Therefore, policies of hinterland and land-locked countries will need to be geared to promote the emergence of their own hubs. In a more general sense, this is in fact what has been done explicitly or implicitly when so-called “growth poles” or “growth areas” were developed that linked “growth centres” with a strong backbone, trunk, path, corridor, or transmission system. Such concepts are an integral part of current thinking in some countries (e.g., the United Kingdom), where network-based or related cluster-based policies are used for regional development.

When more than two networks (of different countries or with different ownership) are linked, typical transit issues arise. These are of great concern particularly to landlocked countries. Often the best approach to solving such issues is to take the perspective of the combined larger network, rather than that of national networks as competing agents. An obvious solution to controversial transit issues is some sort of integration\(^a\) which will be mutually beneficial.

\[\text{(b) Nodes}\]

For the strength and value of a network (in terms of network interconnectivity, interoperability, quality, as well as current and future expected network size), the nodes are as important as the links. In the case of transport, important nodes include intramodal connections (change of gauge, transhipment), intermodal connections, ports and border crossings. Governments and the private sector have promoted and even created key inland nodes through the development of inland container depots (ICDs), logistics centres, freight villages, and economic zones. Similar trends can be seen in communications. For example, IT service industries cluster in close location to high capacity international Internet backbones and hubs.

2. **Linkages between physical and non-physical networks**

Regardless of which level of quality and efficiency of land-based networks is achieved, hinterlands and particularly land-locked countries will always face an additional cost disadvantage due to their location and the lower relative costs of maritime transport and communications\(^b\). However, specialized inland production hubs may emerge, if these inland areas (or land-locked countries) can offer linkages to superior non-physical networks such as institutional networks, markets, human resources and learning networks. As a matter of fact, the example of the landlocked

\[^a\] Assuming the absence of significant negative externalities, of course (e.g., pollution and congestion).

\[^b\] Maritime transport is generally cheaper than land transport due to economies of scale of ships and ports. Most major inter-country communications lines are under-sea cables, since land-based cables are more costly due to right-of-way and other issues.
countries of Austria and Switzerland illustrate this point in the case Europe66 where economic integration has been far-reaching.

While land-locked countries will tend to focus their economic policies on services, their geographical location is not prohibitive for possible full participation in the international production networks focusing on manufacturing. It should be noted that transportation accounts on average around 4% of the costs of each unit of output in manufacturing67. In OECD countries, transport usually accounts for a quarter of total logistics costs (storage for a fifth, and inventories for a sixth)68. In contrast, in the case of land-locked developing countries, transport appears to account for much less than a quarter of total logistics costs69, due to inefficiencies in the system and transit issues, including “under the table payments”. This implies that the major constraints to improved competitiveness of land-locked countries in manufacturing are cross-border issues (including choice of product issues) and inefficient logistics systems rather than infrastructure issues or their geographical location per se.

Yet, transport remains an important issue for land-locked developing countries, since freight costs alone (transport and insurance) can make up to 40% of export values68, whereas in OECD countries, total logistics costs70 are estimated to reach up to only 20% of total production costs. It should be noted that these shares are much larger than those quoted in the previous paragraph, due to: (a) a large share of exports of developing landlocked countries are bulk commodities of low unit value and high unit transport costs; and (b) shares quoted above are for OECD countries and manufactured products which are high-value goods.

3. Network externalities and effects

Network externalities in particular, and network effects in general, are at the same time a serious challenge and a great opportunity for smaller economies and landlocked countries. This is because regional cooperation and integration in both physical and non-physical networks increases the effective size of a network in terms of its associated user base and market size. In other words, if sufficiently integrated with larger or better geographically located neighboring countries, smaller and landlocked countries will be able to offer foreign investors both the benefits of a large network/market as well as those of an easier manageable, flexible economy. For example, the relatively small Irish economy has benefited considerably from European Union membership, as it has proved to be an attractive location for investment by multinationals that were motivated by the perspective of EU market access.

66 For example it should be noted that the industrial mix of Austria and Switzerland differs significantly from that of the Netherlands.

67 http://people.hofstra.edu/geotrans/eng/ch7en/conc7en/ch7c1en.html

68 http://www.worldbank.org/transport/ports_ss.htm

69 No reliable data seems to be published for Asian countries regarding the proportion of transport costs in total logistics costs to and from inland locations. However, common-sense tells us that this ratio must be lower than the one in OECD countries. Related measures collected by UNCTAD, such as the ratio between transportation and insurance payments to the value of exports, indicate a similar direction (e.g., UNCTAD/TD/B/LDC/AC.1/17 and UNCTAD/LDC/112, June 2001), but these measures have not been corrected for the countries’ different mix of export/import goods.

70 packaging, storage, transport, inventories, administration and management
Similarly, even in the absence of far-reaching economic integration, Singapore and Hong Kong, China, are examples illustrating how relatively small and flexible economy can benefit from their special geographic location, by promoting themselves as major nodes in the global transport and communication network.

In general, the benefits of regional integration are mutual for all participating countries, as the value of the networks of even the larger countries and coastal areas will increase as networks/markets in hinterlands and neighboring smaller economies are connected. An increased network size will make the combined network more useful and competitive, even in the case that a newly connected economy does not significantly participate in the regional RPNs. For example, Thailand and the Lao People’s Democratic Republic both benefit from sharing Thai satellite capacities; Thailand through a larger user base, and Lao People’s Democratic Republic through access to otherwise inaccessible services.

4. Barriers to effective cooperation and integration in the infrastructure subsectors

There remain many physical and non-physical barriers to effective cooperation and integration in the infrastructure subsectors. These barriers define the issues to be addressed, the nature of which are remarkably similar throughout the different subsectors. They are summarized in Table 1 for the cases of transport and ICT and can be organized into four categories: (a) infrastructure (hardware) related issues; (b) software related issues; (c) transit issues; (d) movement of people, goods, digital signals, etc. across borders; (e) safety, security and environmental considerations.

It should be noted that, while there are similarities, there is not a one-to-one mapping in Table 1 between the issues in the two sectors. The major differences between the transport and ICT issues arise from a very short time scale for the “software layer” and more significant increasing returns to scale in the case of ICT. These differences have implications for market regulation, the role of government, and time management (for example, requiring different organizational set-ups).

<table>
<thead>
<tr>
<th>Transport</th>
<th>Communications/IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure (hardware) related issues</td>
<td></td>
</tr>
<tr>
<td>Network formulation, design standards, and vehicle weight and dimensions</td>
<td>Network formulation: Emergence of secondary regional hubs in Asia (“hub-and-spoke system”)</td>
</tr>
<tr>
<td>Infrastructure facilities and services at border crossings</td>
<td>International interconnection (e.g., pricing and standards)</td>
</tr>
<tr>
<td>Road signage and traffic rules</td>
<td></td>
</tr>
<tr>
<td>Software related issues</td>
<td></td>
</tr>
<tr>
<td>Understanding of Documentation by Officials</td>
<td>Human resource issues; Software life cycle much shorter than organizational “clockspeeds”</td>
</tr>
<tr>
<td>Collaboration on Procedures and Practices between Officials</td>
<td>Taxation, “bit-tax”; DNS and intellectual property</td>
</tr>
<tr>
<td>Transit issues</td>
<td></td>
</tr>
<tr>
<td>Transit Traffic (fees, standards, procedures)</td>
<td>Transit traffic (land-based fixed lines)</td>
</tr>
<tr>
<td>Infrastructure related transit issues (see also network formulation)</td>
<td>Fixed lines vs. satellite footprints</td>
</tr>
<tr>
<td>Movement of people, goods, digital signals, etc. across borders</td>
<td></td>
</tr>
<tr>
<td>Drivers and Crews</td>
<td>International outsourcing of IT services and IT-enabled services; software; open-source</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport</th>
<th>Communications/IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure (hardware) related issues</td>
<td></td>
</tr>
<tr>
<td>Network formulation, design standards, and vehicle weight and dimensions</td>
<td>Network formulation: Emergence of secondary regional hubs in Asia (“hub-and-spoke system”)</td>
</tr>
<tr>
<td>Infrastructure facilities and services at border crossings</td>
<td>International interconnection (e.g., pricing and standards)</td>
</tr>
<tr>
<td>Road signage and traffic rules</td>
<td></td>
</tr>
<tr>
<td>Software related issues</td>
<td></td>
</tr>
<tr>
<td>Understanding of Documentation by Officials</td>
<td>Human resource issues; Software life cycle much shorter than organizational “clockspeeds”</td>
</tr>
<tr>
<td>Collaboration on Procedures and Practices between Officials</td>
<td>Taxation, “bit-tax”; DNS and intellectual property</td>
</tr>
<tr>
<td>Transit issues</td>
<td></td>
</tr>
<tr>
<td>Transit Traffic (fees, standards, procedures)</td>
<td>Transit traffic (land-based fixed lines)</td>
</tr>
<tr>
<td>Infrastructure related transit issues (see also network formulation)</td>
<td>Fixed lines vs. satellite footprints</td>
</tr>
<tr>
<td>Movement of people, goods, digital signals, etc. across borders</td>
<td></td>
</tr>
<tr>
<td>Drivers and Crews</td>
<td>International outsourcing of IT services and IT-enabled services; software; open-source</td>
</tr>
</tbody>
</table>
Transportation and energy networks also have somewhat similar characteristics. In fact, energy grids are closely related to transportation grids. In some instances, they even compete with each other, as is the case with LNG transport by ship versus natural gas transport through pipelines. Similar to different transport modes, different energy fuels require fundamentally different infrastructure, and the choice of fuel causes a strong lock-in. However, a major difference when compared to transportation is the fact that energy grids are usually one-way “pipes”, rather than two-way pipes.

C. Conclusion

In conclusion, it appears possible but challenging to extend the Asian production networks from the coastal areas to hinterlands and even landlocked countries. The key to such an extension is regional cooperation and integration in the physical and non-physical transport and communications networks and interlinked networks from other sectors.

While links, nodes, and linkages between different physical and non-physical networks need to be strengthened in a strategic fashion, there remain many physical and non-physical barriers to effective cooperation and integration in the infrastructure subsectors which are listed in Table 1. These barriers define the issues that need to be addressed in strategies and programmes.

VII. REGIONALISM: GOVERNMENT-LEVEL REGIONAL COOPERATION IN INFRASTRUCTURE

All the previous chapters have highlighted the overarching importance of regional cooperation in infrastructure, particularly due its network nature. This chapter analyses in more detail *the role of regional and international agreements, organizations and programmes in the process of extending international production networks from coastal areas to inland sites in Asia.*

In order to examine this role more closely, the chapter, firstly, puts regionalism in context; secondly, it provides examples of international and regional agreements, organizations and programmes; thirdly, it reviews general organizational trends within the region; and, finally, it addresses the question of which path (bottom-up, top-down, or a combination of both) might be the “right” path to multilateral agreements in the region.

Table 1: Selected major issues for effective regional cooperation in the transport and communications sectors.

<table>
<thead>
<tr>
<th>Other considerations</th>
<th>Safety (incl. carrier liability regimes)</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are also important factors that affect the alignment of international and regional agreements and strategies. For example, the legal, regulatory, and institutional frameworks in different countries can significantly influence the achievement of regional goals. These frameworks can include aspects such as the establishment of regional organizations, the adoption of common policies and standards, and the coordination of national and regional programs. The alignment of these frameworks is crucial to ensure efficient and effective regional cooperation and integration.</td>
<td>Sharing and IP; etc.</td>
<td>Censorship of information flows by some governments at their “borders”.</td>
</tr>
<tr>
<td>Containers</td>
<td>Protocols and integration of international testbeds (e.g., with IPv6); DNS</td>
<td>Protocols and integration of international testbeds (e.g., with IPv6); DNS</td>
</tr>
<tr>
<td>Environment</td>
<td>Environmental considerations</td>
<td>Indirect environmental effects</td>
</tr>
</tbody>
</table>

In conclusion, it appears possible but challenging to extend the Asian production networks from the coastal areas to hinterlands and even landlocked countries. The key to such an extension is regional cooperation and integration in the physical and non-physical transport and communications networks and interlinked networks from other sectors.

While links, nodes, and linkages between different physical and non-physical networks need to be strengthened in a strategic fashion, there remain many physical and non-physical barriers to effective cooperation and integration in the infrastructure subsectors which are listed in Table 1. These barriers define the issues that need to be addressed in strategies and programmes.

VII. REGIONALISM: GOVERNMENT-LEVEL REGIONAL COOPERATION IN INFRASTRUCTURE

All the previous chapters have highlighted the overarching importance of regional cooperation in infrastructure, particularly due its network nature. This chapter analyses in more detail *the role of regional and international agreements, organizations and programmes in the process of extending international production networks from coastal areas to inland sites in Asia.*

In order to examine this role more closely, the chapter, firstly, puts regionalism in context; secondly, it provides examples of international and regional agreements, organizations and programmes; thirdly, it reviews general organizational trends within the region; and, finally, it addresses the question of which path (bottom-up, top-down, or a combination of both) might be the “right” path to multilateral agreements in the region.
A. What is regionalism?

Whereas regionalization was defined as the largely market and private-sector driven form of regional economic cooperation, for the purpose of this paper, regionalism is the state-driven form of regional economic cooperation among governments.

A strong message throughout this paper has been that regionalization and its expression in terms of regional production networks needs to be complemented with regional cooperation between governments in infrastructure development (i.e., regionalism) in order to address the many inter-country challenges and to reduce the potential risks of marginalization of hinterlands, landlocked countries, and small economies.

B. Examples of regional intergovernmental organizations, agreements and programmes

This Section provides some examples of major intergovernmental organizations, agreements and programmes in the region. Organizations’ full names, membership information and date of establishment is summarized in the Annex II.

1. Classification

Regional and subregional\(^{71}\) cooperation in infrastructure takes many different forms. It ranges from activities and projects that include several countries, through official inter-country projects with government involvement, projects of international organizations and development banks, to policy cooperation through the United Nations regional commissions or formal intergovernmental agreements (IGAs).

For the purpose of this paper we distinguish six different types\(^ {72}\) of cooperation. For each type, most of them can be general in nature or applied to a specific sector. They include:

a) Global UN conventions

b) Intergovernmental agreements/organizations addressing regional cooperation
c) Intergovernmental agreements/organizations addressing subregional cooperation
d) Programmes addressing regional or subregional cooperation
e) Frameworks for agreements
f) Guidelines for legislation

It should be noted that this categorization does not give a static picture. For example, programmes are often designed to have a catalytic role in leading to various formal, intergovernmental agreements. Also, some programmes, such as TRACECA, start out as a programme, but are later transformed into a specific intergovernmental agreement (IGC-TRACECA).

\(^{71}\) The definition of what is considered to “regional” varies substantially among organizations. For the purpose of this paper, the term “regional cooperation” refers to cooperation that engages at least a significant part of Asian countries. Sub-regional cooperation refers to cooperation between fewer countries, for example, cooperation in South-East Asia (e.g., ASEAN), or South Asia (e.g., SAARC).

\(^{72}\) and eight subcategories
2. Global United Nations conventions

There are global United Nations conventions of a general nature, as well as those in specific sectors. These conventions have often set international standards which are applied in practice, even in some countries that have not actually acceded to the convention. These conventions are usually deposited with the Secretary General of the United Nations and are open to world-wide accession.

(a) Global UN conventions of a general nature

Some of the global UN conventions of a general nature, that are most relevant in the context of this paper, include general international conventions on land-locked countries, such as the Convention on Transit Trade of Land-Locked States (New York, 1965)\(^73\), the Convention and Statute on Freedom of Transit (Barcelona, 1921), and the United Nations Convention on the Law of the Sea (1982).

(b) Global UN conventions in a specific sector

(i) Global UN conventions in transport

There is an established set of more than 50 international conventions specifically dealing with transport issues (e.g., the seven conventions included in ESCAP resolution 48/11\(^74\)), a large number of which are open to accession by any State. Because of the importance and rapid development of land transport in Europe over the last 50 years, the United Nations Economic Commission for Europe (ECE) has been designated by the Secretary General as the lead organization in matters related to land transport conventions.

It should also be noted that there are international UN initiated agreements that are deposited at the UN in New York\(^75\) and that are open to accession by any State, but that are of a purely regional nature (e.g., the European Agreement on Main International Traffic Arteries (AGR, 1975)\(^76\)). In the transport sector, they provide a similar function to that which is performed by the rule-based multilateral trade agreements embodied in the WTO Agreement and subsequent negotiations, in that they provide a firm basis\(^77\) (and end game) for the harmonization\(^78\) of regional, subregional, and bilateral transport agreements.

\(^73\) see the Website of the UN High representative for land-locked developing countries for detailed information, http://www.un.org/special-rep/ohrlls/ohrlls/default.htm

\(^74\) These seven conventions are covering issues such as road traffic rules, road signs and signals, transit of sealed containers, temporary importation of vehicles, harmonization of border crossing procedures and the commercial carriage of goods by road. http://www.unescap.org/tctd/lt/reso48_11.htm

\(^75\) http://untreaty.un.org/ENGLISH/bible/englishinternetbible/chapterXI.asp

\(^76\) http://untreaty.un.org/ENGLISH/bible/englishinternetbible/partI/chapterXI/subchapB/treaty161.asp

\(^77\) However, it should be noted that, in the contrast to the case of the WTO, the UN transport agreements discussed here do not provide for a similar quasi-judicial dispute settlement system and sanctions for non-compliance.

\(^78\) It should be noted that liberalization is a more prominent objective of WTO than harmonization.
(ii) Global Internet communications agreements and cooperation

By its very nature, the Internet is global. As a result, international standards for the Internet and the WWW have been set on the global level by new organizations such as the W3C and ISOC, with ITU playing a minor role compared to the past.

However, in a similar manner to transportation networks, the Internet is a physical network that is bound and shaped by geography (Figure 9). In fact, the network characteristics of fixed-line IP networks are similar to those of land and water transport networks, and those of satellite communications are similar to those of air transport. The laying of communications cables needs to overcome the same physical and economic constraints of space, such as right of way issues, as in the case of roads. For this reason, long-distance Internet backbones often follow least cost transport routes. Figure 9 shows that the Trans-Europe-Asia Information Network (TEIN) follows the usual sea routes of container trade between Europe and Asia.

Figure 9: Trans Europe Asia Information Network (TEIN): Actual route in November 2003.

While there are striking resemblances between many of the issues that need to be addressed in the communications sector compared with the transport sector, only few international agreements exist in the ICT sector. These issues are either of a rather general nature (e.g., the Council of Europe's Cybercrime Treaty) or focus on technical standard setting in telecommunications (e.g., ITU standards). In contrast to the transport conventions, W3C and ISOC standards have been developed by non-governmental organizations and are non-binding. However, they have become “de-facto industry standards”. There appears to be a growing need to move to consistent, binding international conventions for cross-border Internet use, similar those relating to cross-border transport infrastructure, facilities and services.

3. Intergovernmental agreements/organizations addressing regional cooperation

Other types of formal intergovernmental agreements have been created for the purpose of promoting regional economic cooperation in general or at least in several pre-specified sectors. These agreements have usually set up a secretariat, an organization or another working mechanism that draws upon administrative and substantive resources. The examples of such agreements/organizations are summarized in Table 4.

(a) IGAs addressing regional cooperation in general

One of the earliest post-World War II examples in Asia and the Pacific was the establishment of the United Nations Economic and Social Commission for Asia and
the Pacific (ESCAP)79 in 1947. This regional commission has mainly served the function of a regional intergovernmental forum. It has catalyzed the creation of many governmental and non-governmental regional organizations and networks, including, for example, the Asian Development Bank (ADB), and the Asia-Pacific Telecommunity (APT), which in turn have promoted regional cooperation.

\textit{(b) IGAs addressing regional cooperation in a specific sector}

There exist an increasing number of intergovernmental agreements/organizations on regional cooperation in the transport sector and to a lesser extent the communications sector (Table 5).

A recent example in the area of cross-border road transport is the “Intergovernmental Agreement on the Asian Highway Network” that was signed at Shanghai in 2004. The agreement covers issues related to routes, including their numbering, classification, design standards, and signage of the highway.

In terms of inter-governmental cooperation in IT, the Asia-Pacific Telecommunity (APT) has been facilitating regional ICT standards and regional exchange of technical expertise. The ASEM process has also played a surprisingly dominant role in Asia and for Europe-Asia interconnections.

However, Asian regional cooperation in the key area of cross-border Internet backbones, has been very limited, compared to other regions of the world and other sectors. IT cooperation has been rather global in nature, and has been driven by multinationals from North America, Europe, and (to some extent) Japan. These which have emerged as global Internet hubs, with Asian countries at the end of the spokes.

4. \textbf{Intergovernmental agreements/organizations addressing subregional cooperation}

\textit{(a) From regional to subregional organizations and programmes}

While a sizable number of regional and subregional intergovernmental organizations and programmes have been created in Asia and the Pacific since 1945 and particularly in the past 20 years, there has been a clear trend to ever more and often overlapping organizations and programmes. These have tended to have fewer and fewer members (Figure 10)80. All these organizations and programmes have promoted inter-governmental agreements and economic cooperation on many issues including cross-border transport and increasingly communications.

79 original name was ECAFE (Economic Commission for Asia and the Far-East)

80 Smaller groups and groups of a “like-mind” can reach consensus easier, which increases the effective speed of implementation.
A number of subregional, intergovernmental agreements have emerged, such as SAARC, ECO, BIMSTEC, and particularly ASEAN. These organizations are increasingly providing the forum for the creation of formal regional agreements.

Under the umbrellas of these organizations, formal regional agreements have been created on a large number of specific issues or in specific sectors, particularly the transport sector. An example of this in the region is ASEAN. The resulting formal agreements on specific issues in practice serve the role of instruments for regional cooperation and integration.

Very recently, there have been efforts by Japan and the Republic of Korea to foster regional Asian cooperation on Internet backbones in order to develop into regional Asian hubs. Initially, this cooperation was mainly on a bilateral basis. However, more recently, a multilateral approach has been gaining greater significance. Interestingly, the multilateral approach is driven rather by non-state actors. Such cooperation and the development of new hubs is likely to gain further importance in the coming years, as the Internet population of Asia and the Pacific (ESCAP region) surpassed that of North America earlier this year. However, to date, official, inter-

81 Data source: All organizations of Table 4, Table 5, Table 6 and Table 7 are included. It should be noted that the total number of member countries is plotted, including member countries that are not located in Asia and the Pacific. The criteria for inclusion of organisations was that they promote regional cooperation in Asia and the Pacific.
governmental cooperation in Asia on international Internet backbones has been much less well “developed” than in the case of transport.

5. Selected programmes

(a) Selected programmes addressing subregional or regional cooperation in general

ADB has been a pioneer in the promotion of general regional cooperation programmes such as GMS, CSATTF, CAREC and SASEC (Table 6). These subregional programmes are organized through ministerial-level subregional conferences where high-level policy agreement is reached for subsequent programme activities. However, in contrast to the example of ESCAP and probably due to the fact that ADB is a bank, much of the programme activities themselves are on the national level (see also Table 2). Other organizations including the UNDP and World Bank have created subregional, general cooperation programmes of their own (e.g., Tumen River Area Development Programme and the CIS-7).

(b) Selected programmes addressing subregional or regional cooperation in a specific sector

Programmes on regional cooperation specifically in the transport sector include the ESCAP Asia land transport development (ALTID) project and the UNDP Silk Road Area Development Programme. Examples from Europe are the Trans-European Railway (TER) and the Trans-European Motorway Project (TEM).

In the communications sector, the cluster “Trans-Eurasia Information Network (TEIN)” of the inter-governmental ASEM process has played a dominant role in Asia. Activities are organized under the so-called Information Technology Thematic Cluster. On the technical and Internet network implementation level, a number of so-called AP* organizations have emerged under APNG leadership since the early 1990s. For example, there is an APAN network, which follows roughly the existing divisional lines of general, subregional, economic cooperation initiatives (Figure 11).

82 TEIN was originally suggested by the Republic of Korea and co-sponsored by France.

83 http://europa.eu.int/comm/external_relations/asem/cluster/it.htm

84 The activities of the Asia Pacific Networking Group (APNG) have led to the creation of Asia-Pacific, Internet-related organizations that are loosely connected with each other and are often referred to as “AP* organizations”. Examples include APNIC, APIA, APTLD, and APCERT.
6. Frameworks for Agreements

Examples of frameworks for agreements include the ASEAN framework agreement on multimodal transport, the GMS framework agreement for facilitation of cross-border movement, the ECMT recommendation for bilateral agreements in road transport 85. Such frameworks perform a number of functions perhaps the most important of which is that they provide a consistent basis for negotiating bilateral, plurilateral and subregional agreements. In the case of the GMS transit transport agreement it was initially used to govern bilateral and trilateral relationships between GMS member countries on specific routes. One of the principal advantages of the Agreement is that it can be easily extended to additional routes and countries as it has been developed in a participatory manner by all the member countries.

A further advantage of, for example, the ECMT type of agreement is that it provides a “level playing field” for partners in weaker negotiating positions or with weaker negotiating skills and capacities. Clearly, there are also the reduced resource costs and time required to negotiate agreements based upon agreed frameworks. A “disadvantage”, however, can be that the initial negotiators “set the terms”, leaving others with only a “take it or leave it option”.

7. Legislative Guidelines and Model Clauses

There are a number of examples of such guidelines, including the UNCITRAL legislative guide on privately financed infrastructure projects (including model legislative provisions) 86, and the ESCAP Guidelines for Maritime Legislation 87. Such guidelines also perform a number of functions. Firstly, they provide “checklists” for countries in developing domestic legislation, thereby reducing resource costs and time as well as assisting in the capacity building process. Secondly, if they are related to the subject matter of bilateral, regional or international agreements, they can provide consistent advice in the formulation of domestic legislation. Thirdly, whilst they may be primarily related to domestic legislation, they introduce a consistency and familiarity that facilitates, for example, the attraction of foreign direct investment.

C. Substantive content of regional cooperation in infrastructure, facilities and services

Table 2 summarizes in a stylized form the major items of the substantive content of regional cooperation agreements in infrastructure. The results are mainly based on ESCAP’s analysis of the work of the organizations and programmes listed in Table 4 through to Table 7 in the Annex.

85 http://www1.oecd.org/cem/resol/road/road97e.pdf
86 http://www.uncitral.org/english/texts/procurem/pfip-index-e.htm
Table 2: Substantive content of current regional cooperation in infrastructure, facilities and services*

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>National</th>
<th>Bilateral/Subregional/Regional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Policy planning/costing (within governments), Public sector reform</td>
<td>Cooperation/dialogue, Transit policy, Bilateral/subregional agreements, International transport conventions</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>New construction, Rehabilitation/maintenance, Modernization (application of ICT) equipment (vehicles, rolling stock), Facilities (infra- and intermodal), Maintenance</td>
<td>Facilities (border-crossing), Infrastructure development coordination, Resource mobilization</td>
</tr>
<tr>
<td>Operations</td>
<td>Services, Related businesses, Capacity building (e.g., asset management)</td>
<td>Cross-border service coordination, including equipment exchange, Transit tariffs</td>
</tr>
<tr>
<td>Facilitation</td>
<td>Improvement of business environment for transport operators working in international transport (e.g., e-passes, pre-clearance)</td>
<td>Border crossing facilitation</td>
</tr>
</tbody>
</table>

The national-level work that is done under the umbrella of regional cooperation is in large part the work of development banks (ADB, EBRD and World Bank), UNDP and bilateral agencies. It should be noted that Table 2 appears to be heavily focused on transport. This is simply due to the fact that there are very few regional cooperation activities on cross-border communications issues in the region.

In terms of content, there is currently little cooperation on actual operationalisation of infrastructure.

While many regional cooperation initiatives generally seem to target socio-economic subregional development (e.g., along infrastructure corridors), the explicit link between the various network layers and regional development using a strategic and long-term network perspective, is surprisingly non-existent.

D. Which path toward multilateral agreements?

The number, magnitude and extent of regional and subregional cooperation initiatives and organizations has increased significantly. In the second half of the 20th century and particularly in the past 20 years, a complex web of cooperation mechanisms and relationships has emerged in the infrastructure sectors of Asia and the Pacific.

Table 3 shows a matrix which lists a selection of the main agreements/organizations/programmes against their membership in Asia. As the regional arm of the United Nations, ESCAP is the organization with the most comprehensive membership coverage in Asia and the Pacific. Within the table, groupings of countries can be clearly identified which would appear to follow topographical, historical, religious and cultural lines. Furthermore, some countries are

88 This table was graciously provided by J. Yamamoto (ESCAP).
members of a large number of organizations, whereas others are only members of a few regional organisations.89 While it should be noted that the list of regional and subregional organizations and programmes is not comprehensive, a number of otherwise intuitive general trends are reflected in the table (with notable exceptions, of course). Land-locked countries, such as Tajikistan, Kyrgyzstan, Azerbaijan, Kazakhstan, Uzbekistan, as well as geopolitically important countries such as Russian Federation, China, India, Thailand, and Turkey are the countries that are members of the largest number of agreements and organizations. In contrast, island countries and other developed or newly-industrialized countries in the region90 are only part of a limited number of such mechanisms or programmes of the region.

Table 3 also suggests that a “hub-and-spoke” system of agreements and programmes in the area of transport is evolving. For example, the International North-South Transport Corridor (INSTC) whose founding members were Russia, the Islamic Republic of Iran and India, and BIMSTEC that links a subset of members of SAARC with a subset of members of ASEAN. This network of agreements can be seen as yet another non-physical “soft”-network complementing the “hard”-infrastructure. The situation in transport is somewhat similar to that in trade, where some experts have been discussing the implications of an increasingly complicated “spaghetti bowl” of overlapping bilateral, plurilateral, and subregional trade agreements.91 This has raised concerns regarding possible inconsistencies between these agreements and the multilateral trade agreements of the WTO. There are also concerns that such inconsistencies could lead to lock-in of negotiation positions at the WTO level. The proliferation of bilateral and subregional agreements in the transport sector raises similar concerns regarding their consistency with regional and global conventions. For example, the current proliferation of bilateral and smaller plurilateral agreements makes it increasingly difficult for countries like China to negotiate new commitments, since it has a large number of neighboring countries that are parties to many different agreements.

This raises the question of the extent to which bilateral, subregional and regional transport agreements contribute to global multilateral conventions. Assuming that the “optimal” solution is a consistent and fair multilateral, global, or at least regional convention, the question remains as to which path is the “right” one to achieve such a goal. Due to an increasingly complex “spaghetti bowl” of agreements, there is a pressing need to address this question.

Since issues such as cross-border land transport92 and fixed line Internet communications are regional by nature, a large part of relevant harmonization can be achieved at the regional level. In the context of linkages with other regions (Europe, West Asia, Africa and Latin America and the Caribbean), global harmonization is

89 The rank size distribution of membership size shows a typical power law distribution.
90 Instead, NIEs tend to have more agreements with developed countries, many of which are not located in the region. These agreements are not reflected in the matrix of Table 3.
92 For example, it doesn’t matter very much whether land transport agreements in South America differ from those in Asia.
highly desirable, if not necessary. The “spaghetti bowl” example of cross-border trade and transport agreements should also be read as a lesson for similar future trends in ICT in the region.
Table 3: Matrix of agreements/organizations versus its member countries in Asia.93

93 It should be noted that the list of countries is not complete for some organizations (e.g., ESCAP, ECE, APEC) as they have member countries located outside the Asia and the Pacific region.
E. Key findings of Review of Regional Cooperation in Land, Maritime and Intermodal Transport Infrastructure development

As part of the preparatory work for the ESCAP Theme Study for the Commission in 2006, a review of regional Cooperation in land, maritime and intermodal transport infrastructure development was carried out, the key findings of which are presented here (for more details, see Annex 1):

Asian Highway and Trans-Asian Railway continue to serve as reference for many new subregional cooperation initiatives in land transport development.

ESCAP’s regional cooperation initiatives in Asian land transport, the Asian Highway (AH) and the Trans-Asian Railway (TAR) continue to serve as reference point for both subregional and inter-regional cooperation initiatives. The Intergovernmental Agreement on the Asian Highway Network entered into force in July 2005 and the draft intergovernmental agreement on the Trans-Asian Railway is expected to be signed in Nov. 2006. Noteworthy recent cooperation initiatives also include the UN Special Programme for the Economies of Central Asia (SPECA) since 1997 and the Euro-Asian Transport Linkages Project of UN Regional Commissions since 2002.

The major part of subregional cooperation in transport is promoted under the frameworks of subregional, intergovernmental organizations, such as ASEAN, ECO, FORUM and SAARC, which cover a multitude of economic sectors. Most recently, there has been also a proliferation of many other programmes, projects and initiatives with elements of subregional cooperation in land transport, such as BIMP-EAGA, IMT-GT, IMS-GT, AMBDC, GMS, and ACMECS. Most of these organizations and programmes aim to complement each other and the AH and TAR.

Competition issues in maritime transport development and special needs of Pacific Island States.

Regional cooperation in maritime transport takes significantly different forms in the case of the coastal regions of the Asian continent and its major economies, than in the case of small island developing states (SIDS) in the Pacific. Changes in technology, ship route structures and the role of state owned ports, have led to consolidation, concentration, co-operation and strategic alliances in shipping. Particularly, the emergence of port operating companies with dominant work market positions has raised a number of competition issues that still remain unresolved. Regional and subregional cooperation in transport of small island developing states (SIDS) is promoted mainly by the ESCAP Pacific Operations Centre (EPOC) and the Pacific Island FORUM. The Global Action Plan for small island developing states (SIDS) has been a guiding framework for regional cooperation in the Pacific since 1994.

Regional cooperation in development of an Asian integrated transport systems is in its infancy

While the private-sector driven development of maritime and civil aviation networks have developed into their characteristic hubs-and-spokes systems, governments have tried to promote scale and interconnection through inland container depots (ICDs) on the national level. Since companies in the maritime and air transport sectors are owning or running regional and global networks of their own, regional cooperation initiatives to promote integrated transport mainly focus on the land linkages to these networks. The ALTID project of ESCAP is an early example. The ESCAP Secretariat is working on a practical methodology for development of an Asian Integrated Transport System and has promoted cooperation through a series of subregional studies. ESCAP has also been working closely with ADB, supporting its comprehensive subregional cooperation programmes in Asia and
the Pacific, all of which include components related to integrated transport: GMS, SASEC, CAREC, BIMP-EAGA, SECSCA, and the Pacific Plan for the small island states in the Pacific Ocean.

F. Conclusion

The large number of agreements and initiatives in Asia and the Pacific in the areas of trade, transport and to a limited extent in ICT are a general expression of the desire of governments to cooperate on the issues and of their recognition of the potential benefits of such cooperation, particularly as a response to globalization challenges.

As issues like cross-border land transport and fixed-line Internet communications are regional by nature, useful harmonization can be achieved on the regional level within a global framework.

The complex “system” of overlapping agreements can be viewed as yet another non-physical network layer that emerges with, and complements that of physical network infrastructure development.

Despite the many similarities, there are also important sectoral differences in regional cooperation on networks infrastructure, facilities and services.

In terms of the content of regional cooperation, more cooperation on actual operationalisation of infrastructures could prove beneficial. In this context, a strategic and long-term network perspective is needed that fully takes into account the explicit link between the various network layers and to development.

VIII. SYSTEMIC RISKS ARISING FROM INCREASED REGIONAL INTEGRATION

This Chapter uses the concept of networks (introduced in Chapter V) to identify major systemic risks related increased regional cooperation and integration.

A. Introduction

Far-reaching processes such as regional integration or globalization in general often lead to a re-distribution of costs and benefits, including “material” and social well-being. Consequently, various groups of people and even countries will have different views on what is a desirable or an undesirable effect of regional integration. For example, we can look at an expected re-distribution of income opportunities between two groups of people due to regional integration, and assess the probabilities of various possible outcomes. This approach provides measures of risk, a concept that by nature is neither positive nor negative.

B. Types of risk

Most risks are simple direct risks. For example, the risk that the income of a certain group of rice farmers will increase/decrease due to regional integration is such a direct risk. Direct risks can usually be addressed by appropriate policies of national government, and are, therefore, not considered here.

However, there are also so-called systemic risks which are risks that are inherent in the “system”, as it becomes integrated. These types of risks often can only be addressed by regional cooperation of governments, not by policies of a single government.
C. Systemic risks

Examples of systemic risks arising from increased regional integration include the following:

a) Strong networks usually lead to concentration on all levels, as specific groups become increasingly able to control key links and nodes within networks and between networks. Under such a scenario, power relations become an important issue. In the most extreme case, lobbying groups may de-facto achieve increasing control over or “capture” the decision-making process of political representatives.

b) Co-opetition trends, where otherwise competing firms collaborate on specific issues (often related to networks), may become a serious challenge for governments as national regulators and competition authorities that actually have to deal with international networks. Due to the absence of efficient regional or even global regulatory institutions, it may be difficult to find the “right” balance between where to strengthen or refocus networks and where to foster competition.

c) Decisions made concerning investment in infrastructure can, due to its high capital cost and long gestation periods initiate path-dependent processes and lock-in effects. Economic integration as a whole appears to be a path-dependent process which may lead to lock-in, resulting in potentially high costs for governments to change course in terms of their regional integration. Examples of the high costs of the reverse process of “disintegration” are the erecting of borders that did not formerly exist following the dissolution of the Soviet Union, as well as the independence on the Indian Subcontinent (1947).

d) Governments need also to be aware that economic cooperation creates inter-dependencies that might eventually spill-over into other fields.

e) Countries that put on the “golden straight-jacket” by engaging fully in various forms of economic integration will prosper, but may also be left with fewer and fewer national policy options. Some argue that this will have adverse effects on social safety nets and well-being in general.

f) Regional integration may lead to increased vulnerability of the “system”. For example, manufacturing and assembling activities may be deeply affected by political developments in a single yet small country that forms part of its regional production network, if adequate risk mitigation measures are not in place. Similarly, the security of the system of global container shipping lines has been of concern recently, as they form the backbone of the regional and international production system. Such vulnerability may have spill-overs to the world economy, where economic “hikes” may become more pronounced than in the past.

g) In regional integration, labour has been the only factor of production that has not been free to move across borders. This may eventually lead to additional imbalances within countries.

A proper risk management view needs to be taken by governments individually and jointly, in order to adequately quantify and address such inherent risks. System improvements could then minimize these risks from the outset.

94 One might consider a nightmare scenario for container shipping in which the ports of Singapore or Hong Kong, China, went out of action.

95 with few exceptions
D. Conclusion

Risks per se are neither good nor bad by nature. The risks mentioned above are not arguments against regional cooperation. On the contrary, awareness of them ensures that regional cooperation in infrastructure can actually deliver what it promises. Risk management of regional cooperation is analogous to health insurance coverage. Awareness and preparation for the possibility of getting sick does not create sickness, it rather mitigates the risk of getting sick.
PART THREE: INTERNATIONAL EXPERIENCES IN MOVING TOWARD INTEGRATED TRANSPORT SYSTEMS

There are encouraging international examples of how to develop integrated transport systems, both from the ESCAP region, as well as in other parts of the world. Most of these examples are at the national level, but international examples have also emerged. More complete lists of such policies, initiatives and projects are contained in the Review of Developments in Transport in Asia and the Pacific, 200596 and earlier versions of the Review.

These presented examples cover all areas of network integration, including intermodal infrastructure and (logistics) services, integration of sustainability objectives, as well as facilitation of cross-border transport and transit.

IX. INTERNATIONAL EXPERIENCES IN DEVELOPING INTERMODAL INFRASTRUCTURE AND SERVICES

The purpose of this chapter is to provide a “flavour” of the high-level policies and many initiatives by governments and the private sector in developing intermodal infrastructure and related services. The chapter comprises of a rather selective pen pictures of such policies and initiatives, and of an overview of related, ongoing ESCAP activities on the subregional level.

A. Intermodal infrastructure and services

1. Overview

Countries within the ESCAP region have varying levels of intermodal infrastructure and services. And they face differing challenges (both physical and institutional) in upgrading existing or creating new intermodal infrastructure, or in promoting the use of these systems. Finally, countries are at different stages in devising strategies to remedy existing deficiencies and planning for future needs.

But common ground amongst countries within the ESCAP region, despite these differences, is recognition by their respective governments and industry groups of the benefits an intermodal freight system can deliver for social and economic performance. This section presents brief pen pictures of recent developments in selected countries which differ greatly in their level of income and the maturity of their intermodal systems. Examples from Australia, China, India, Malaysia, Nepal, and Philippines are included.

2. Australia

Australia has recently witnessed a major trend towards intermodal transport methods to move freight interstate and internationally. Several State Governments have set targets for moving freight to rail (typically 30% to 40% of port-related container movements). In pursuit of these targets, the States, in conjunction the Australian Federal Government’s new ‘Auslink’ funding program and the private sector, have fostered a significant amount of investment into intermodal facilities. As a result, Australia has an advanced intermodal framework of planning and infrastructure. Presented in Box 1 is a case study of Parkes, one of the significant intermodal facilities in Australia. Unlike many intermodal facilities in Australia and other ESCAP countries, Parkes is concerned primarily with the movement of domestic, rather than international, freight.

96 http://www.unescap.org/tdw/PubsDetail.asp?IDNO=178
3. China

The Chinese *Tenth Five Year Plan and 2015 Long-term Programs of the Railway Scientific and technological development*[^97] specifies objectives and key tasks for the major role that Chinese railways are envisaged to play in the development of a national integrated transport system. It emphasizes the building of strategic research and development capacities in high-speed freight and passenger railways including rolling stock (“technology self-reliance”). It covers the construction of new networks, improvement of efficiencies, the development of IT and new management methods, social and safety objectives, as well as environmental protection issues.

In China, Hutchison Port Holdings operates an ICD at Guanlan in the Baoan district of China, about 32 km northwest of Yantian International Container Terminals. The Guanlan

[^97]: Source: Ministry of Railways, China.
depot is strategically located in the middle of Shenzhen’s major cargo gateways, Yantian Port, Huanggang border crossing, Shekou and Huangtian airport. The depot is also near a number of large industrial areas allowing consolidators and freight forwarders to provide supply chain services including quality inspection and customs clearance to their customers. Its position also provides empty container storage services for shipping lines. To take further advantage of the depot, in September 2003, Hutchison Whampoa subsidiary, Logistics Network Enterprise (LINE) negotiated a license with Guandong and Hong Kong, China authorities, which allows Guanlan Inland Depot to provide truckers with full export containers in return for empties. Prior to this about half the 13,000 container trucks that cross the Hong Kong, China- Shenzhen border daily are empty because mainland regulations have prohibited them from taking cargo back out of China.98

4. India

The new approach suggested in the case of India explicitly mentions the aim of following the Chinese example and foresees the development and integration of dedicated rail corridors, multimodal service, high-speed services for freight and passengers, integration with urban transport systems, and highlights the major environmental benefits from the pursuit of a national integrated transport system.99

Such projects, such as dedicated rail corridors, are seen as key solutions for the increasing congestion in Indian ports (e.g., in Mumbai) which is due to a lacking efficient intermodal system linking ports to major inland cities, for example, linking Mumbai and New Delhi. In essence, it appears that underinvestment in intermodal infrastructure at inland sites and into railways is seen as the prime culprit. This is despite the fact, that an increasingly extensive network of ICDs is emerging with many more in the planning stage100.

5. Malaysia

Northport is Malaysia's largest operator of a multi-purpose port, handling 60% of the nation's trade. It is also Malaysia's first port bringing along with it 103 years of heritage. 81 shipping lines as well as 44 conventional and 502 container vessels made approximately 8,000 ship calls to Northport in 2004, providing services to 300 ports of call in major parts of the world.

Northport is a major hub port and an integral component of the transportation pipeline in the region. With increased connectivity to ports in China and the East Asia and an increase in the spread of services linking US ports, the Mediterranean and Europe, Northport now offers more links to worldwide ports than any other port in Malaysia and has emerged as one of the major hub ports in the region.101

Previously, a number of constraints including the limited ability (due to capacity constraints) to cope with increasing demand, a single track linking Northport to national grid

99 Indian Ports Association.. Container Rail Corridors: An Approach Paper, shipping.nic.in/approach paper.htm.

100 Concor India, www.concorindiana.com

and technology bottlenecks (hampering the evolvement of a fast paperless port business environment) have hindered the further development of Northport.

Abdul Radzak Abd Malex, who is KTM Berhad Freight Services General Manager, has recently raised awareness on the rail modal among public policy planners and players in the logistics sector. Abd Radzak has also stressed that apart from the economical aspect, rail modal option would relieve stress on roads and ports as well as help in the conservation of the environment.102

As a result of government and private sector initiatives and expenditure on intermodal infrastructure, numerous economic benefits have been witnessed for both Northport and Malaysia as a whole. For example, landbridging has reduced the transit time of freight of Malaysia to Bangkok from 5 days via a sea feeder to 2.5 days via rail. It is estimated that freight costs in the above scenario are 30% lower by rail. Consequently, rail connectivity has offered greater efficiency, shorter transit time and lower costs. It has also offered great potential in attracting refrigerated cargoes and motor vehicles from Bangkok – which in turn would be shipped out of Port Klang. Flow-on effects of the improvement in intermodal infrastructure have allowed Northport to support the distribution activities at Northport Distripark and Southpoint. Furthermore, it has eased pressure and lowered dwelling time of containers at Northport during busy periods.

6. Nepal

In Nepal, the increasing containerisation of trade and the need for streamlining transit trade, necessitated the implementation of Multimodal Containerisation Project. Accordingly, detailed studies were undertaken in 1994-95. One of the major components of the trade facilitation project was the construction of three Inland Clearance Depots (ICDs) in the bordering towns of Biratnagar, Bhairahawa and Birgunj, which are key land customs points. The first two are road based and the third one is a rail-based facility. The ICDs are designed to offer the complete range of modern infrastructure with a view to facilitate expeditious clearance of import and export cargo movement by containers.

The Biratnagar ICD is spread over an area of 2.86 ha and the Bhairahawa covers 3.23 ha. The Birgunj ICD, located at Srisiya, 4 km west of Birgunj town, is the biggest of all the three, stretching over an area of 38 ha. It is connected by broad gauge rail line with the Indian border town of Raxaul. Six full-length railway tracks inside the ICD were constructed with the grant assistance of the Government of India. The Birgunj ICD is equipped to provide rail/road transshipment, storage and customs facilities for containerized, break-bulk and bulk cargo moving by rail.

The construction of the Birgunj ICD was completed by the end of December 2000 with rail line construction completed in March 2001. In addition, the construction of a 4-km long link road from the ICD to the main highway was also completed in April 2001. Under the NMTTFP, three reach stackers of 45 ton and one reach stacker of 7.5 ton were made available at the ICD for handling empty and loaded 20-ft and 40-ft ISO containers.

In March 2002, management and operation of the road based facilities at Biratnagar and Bhairahawa were handed over to a Nepal-India joint venture company selected through competitive bidding on a 10-year lease contract. The operation of the Birgunj ICD, however, is awaiting the finalisation of a bilateral Rail Services Agreement between India and Nepal. Once this happens it is anticipated that the new land-based port will lead to improved

efficiencies and cost savings in the movement of Nepal’s containerized exports and imports.103

An integral component of the Nepal Multimodal Transport and Trade Facilitation Project (NMTTFP) is providing private sector freight forwarders with the opportunity to learn about the practices and principles of freight forwarding and intermodal transportation through training workshops and seminars. The project has also established a consultative mechanism - the National Trade and Transport Facilitation Committee (NTTFC) – to advise the Government of Nepal in implementing trade and transport facilitation measures including policy reform.

7. The Philippines

The Philippines, which requires freight to move through the archipelago combining air, sea and road, has a natural requirement for freight to be moved using more than one mode of transport. Consequently, intermodal transport systems have been identified as playing crucial role in the economic development of the widely dispersed regions of the country and are intended to alleviate areas with high poverty incidence. Historically, many regions have suffered from inadequate infrastructure facilities, and lack of reliable and safe transport services which significantly impede the movement of freight.

In 2003, the Department of Transportation and Communications commissioned US$1 million to prepare an intermodal transport project to improve the existing infrastructure within the Philippines.104 This initiative will complement the Government of the Philippines efforts to develop the Strong Republic Nautical Highway.105

B. ESCAP projects on subregional integrated transport networks

As a first step to support and promote the regional cooperation on development of an Asian integrated transport network, the ESCAP secretariat has started to carry out subregional studies on the issue. The first such study focused on North-East Asia, as the countries concerned (China, the Democratic People’s Republic of Korea, Japan, Mongolia, the Republic of Korea and the Russian Federation) do not benefit from a formal economic grouping to facilitate trade and transport as is the case in ASEAN, ECO and SAARC. The second such study is in preparation and focuses on Central Asia, as mandated by the 2nd session of the Committee on Managing Globalization of ESCAP in October 2005. These and future subregional projects by ESCAP on integrated transport networks are expected to follow the ESCAP methodological approach mentioned above.

Among the countries of North-East Asia there is increasing demand for an integrated transport network that combines the different transport modes of rail, road and shipping and will facilitate trade flows and, in turn, trade-dependent economic growth. In order to address issues related to the development of integrated transport, the ESCAP secretariat, in conjunction with the UNDP Tumen Secretariat is implementing a project on an integrated international transport and logistics system for North-East Asia. The main purposes of the project are to: (a) assist countries in adopting integrated transport planning and logistics concepts, thereby improving efficiency and reducing costs to enhance competitiveness; and

103 Purushottam Ojha, op. cit.
104 www.adb.org/Documents/Profiles/PPTA/37233012.ASP
105 This initiative is described in greater detail in Chapter XVI.
(b) promote multilateral cooperation for the development of an integrated international transport and logistics system at the subregional level.

In the first phase of the project, a study was carried out to identify critical areas for transport and logistics performance improvement106. Six international transport corridors in North-East Asia, including road and railway networks linking neighbouring countries and providing connections to major port clusters in the subregion, were identified (Figure 12). The basis for the subsequent route selection was the Trans-Asian Railway and Asian Highway. For each corridor, feasible unimodal/intermodal routes along the corridor with sea container or ferry services were analysed and in-depth route analysis was undertaken, in order to identify physical and non-physical barriers on selected routes. In particular, the study identified substantial losses of time and costs that are associated with intermodal transfers107 and with border crossings.

As part of the project, a policy-level expert group meeting was organized in Ulaanbaatar from 6-8 September 2004. The meeting adopted the proposed integrated international transport and logistics network for North-East Asia with its mix of major routes and corridors (appropriate roads, railways and water transport), including connections to major seaports. Intermodal interfaces such as inland container depots, freight terminals and distribution centres and border crossings were also identified as important nodes along the routes. The meeting adopted actions required to develop the integrated network (Box 2).

Box 2: ESCAP action plan for an integrated international transport and logistics system for North-East Asia

- Eliminate missing links and improve conditions of related infrastructure along the major corridors and identify and prioritize infrastructure development requirements through analysis of the trade and transport markets to determine possible traffic volume along the routes and border crossings.
- Simplify and harmonize transport and trade procedures and documentation, particularly related to border crossings along the selected transport routes, and consider unification of such procedures and documentation.
- Strengthen the position of transport and logistics intermediaries, including freight forwarders, multimodal transport operators and logistics service providers.
- Carry out a study on the role of ICT in transport facilitation and logistics with the development of guidelines for ICT application in North-East Asia.

107 owing to logistics issues and the time needed to consolidate containers to form full train loads.
Figure 12: Proposed integrated transport network in North-East Asia
X. CROSS-BORDER FACILITATION AND TRANSIT FOR LANDLOCKED DEVELOPING COUNTRIES

Due to the existence of national borders, another set of initiatives have to be taken to address cross-border transport and transit, in addition to the development of intermodal infrastructure and efficient services. This Chapter provides a brief view of some of the issues that arise and how they are addressed, particularly through facilitation agreements. These initiatives are an integral part of the development of an Asian Integrated Transport Network.

A. Transit transport issues in landlocked and transit developing countries

An excellent ESCAP study exists on this theme, entitled “Transit transport issues in landlocked and transit developing countries”108, which includes detailed information based on case studies of Kazakhstan, Uzbekistan, Lao PDR, Mongolia and Nepal. This section draws on this study and the reader is referred to it.

1. Background

Owing to geographic and other related attributes, landlocked developing countries are confronted with a range of special constraints that inhibit their full participation in the globalization process. The ESCAP region is home to 12 of the world’s 30 landlocked developing countries. Of these, Afghanistan, Bhutan, Lao People’s Democratic Republic and Nepal are least developed countries, while Armenia, Azerbaijan, Kazakhstan, Kyrgyzstan, Lao People’s Democratic Republic, Mongolia, Tajikistan, Turkmenistan and Uzbekistan are economies in transition. Each of these landlocked countries is disadvantaged by its lack of territorial access to and distance from the sea.

For the landlocked countries, problems of distance are substantially compounded by the need to cross international borders and by the inability to regulate the through transport process. As a result, the delivered costs of imports are higher, exports less competitive and attraction for foreign direct investment reduced.

Economic development in the Asian region and emerging opportunities for interregional trade are stimulating new directions of trade which are creating a demand for landlocked countries to become “land-linking” countries and provide important transit services to their transit neighbours. In this regard, both landlocked and neighbouring transit countries can benefit from actions taken to increase the efficiency of transit transport.

To give appropriate emphasis to the continuing problems faced by landlocked and transit developing countries and the need to improve their transit transport systems, the General Assembly adopted resolution 56/180 of 21 December 2001 on specific actions related to the particular needs and problems of landlocked developing countries, by which the Secretary-General was requested to convene an international ministerial meeting on transit transport cooperation. Subsequently, by resolution 57/242 of 20 December 2002 on preparations for the International Ministerial Conference on Transit Transport Cooperation, it was decided that the International Ministerial Conference of Landlocked and Transit Countries and Donor Countries and International Financial and Development Institutions on Transit Transport Cooperation should be convened at Almaty on 28 and 29 August 2003.

By resolution 57/242, the General Assembly also requested the Secretary-General of the Conference to organize, in close cooperation with the regional commissions, a number of

intergovernmental regional and subregional meetings as part of the preparatory process for the Ministerial Conference. In response to this request, the secretariat developed a methodology for analyzing transit transport corridors and analyzed four case studies. The framework of recommendations and action plan were subsequently reviewed and endorsed by the Commission at its 59th session (first phase) on 24-25 April 2003 as the regional platform to be submitted to the International Ministerial Conference. The key issues contained in the action plan are:

- Policy-related actions
- Improved coordination within and between countries
- Trade and transport facilitation
- Promoting competition in the provision of transit transport services
- Better monitoring
- Enhancing transit infrastructure
- Application of ICT
- Capacity-building and human resources development for transit transport

2. Issues

Efficient transit transport is crucial for landlocked nations. Due to their lack of territorial access to seaports and the prohibitive cost of airfreight, landlocked countries have to rely on the transport of goods by land through one or more neighbouring countries. The additional costs incurred together with problems of distance, make imports more expensive and render exports less competitive, thus putting landlocked countries at a disadvantage in the global economy. Some of the major factors influencing the transit transport systems of landlocked and transit developing countries in the Asian region are:

- Availability and quality of infrastructure
- Limited choice of routes
- Trade and transport facilitation and border crossings issues
- Opportunities of intermodal transport
- The importance of cross-border cooperation
- Transit transport agreements
- Changing global economy

3. Time-cost approach

For the analysis of routes and corridors, ESCAP has promoted the use of time-distance and cost-distance diagrams along specific paths through the networks across borders and across transport modes. This approach was also used for the case studies contained in the transit study mentioned above.

In the time-cost approach, costs and time associated with transport by any mode (road, rail, inland waterway and sea) and with transfers between modes (at ports, rail freight terminals and inland clearance depots) as components are included. The approach is based on the premise that the unit cost of transport varies between modes and this will be reflected in the cost curves. For volume movements, sea transport is generally cheapest per tonne per kilometre and road transport is normally the most expensive, with transport by waterway and rail in an intermediate position.

This simple approach has proven to be a useful tool in the debate over the value of time in freight transport operations by analyzing transit times by mode and route. The longer freight
takes to reach its destination (including dwell times at terminals), the greater will be the implicit interest costs of working capital. Total implicit costs may, however, be a good deal higher, since some goods may be needed urgently and business may be lost if goods arrive too late. The value of time will ultimately depend on the nature of the commodities being transported and the cost of delays must also be taken into account when appraising the risks attached to specific routes and transport modes. As part of the analysis of the transit routing decision, it is important to examine the trade-off between the monetary outlays for transport and the implicit costs of time.

Points of transshipment, at border crossings or between modes, are incorporated into the cost curves as vertical steps. For example, at ports and inland terminals, a freight handling charge is levied without any material progress being made along the supply chain; therefore, the costs incurred here are represented by a shift upwards in the cost curve at these points. The vertical steps can also be broken down to reflect different types of charges or processes involving time, such as document fees, transit charges and cargo clearance costs. In this regard, bottlenecks at points of transshipment can be analyzed in themselves and as part of the overall route.

Using this time-cost approach, example results from the ESCAP transit study of 2003 are summarized in Figure 13 and Figure 14.

![Figure 13: Average transit time for the export of containerized cargo (Per TEU; for Kazakhstan – Germany per half of 12 meter semi trailer).](image-url)
The recommendations listed below have been formulated and refined through the four subregional seminars held in Kazakhstan, Lao People’s Democratic Republic, Mongolia, and Nepal and endorsed by the 59th session of the Commission (first phase) on 25 April 2003. It seeks to focus resources and inputs of landlocked and transit developing countries and donor countries and international financial and development institutions and the private sector on improving the efficiency of transit transport and thereby access to global markets. The actions also recognize the increasingly important potential of landlocked countries to provide transit opportunities for their neighbours, an important factor in the planning of future transit arrangements.

(a) Policy-related actions

While landlocked countries do need the cooperation of neighbouring countries in developing efficient transit transport and access to international markets, they also need to demonstrate their commitment to improve the transit process through the formulation and implementation of a clear and consistent national policy. It is important that landlocked countries coordinate among themselves, ensure representation at international meetings and articulate their positions with a single voice.

(b) Improved coordination within and between countries

Along with the development of transport infrastructure comes the need to formalize arrangements with regard to the operation and facilitation of transit transport. Multiple agreements at a bilateral, trilateral and subregional level along with international conventions can result and are resulting in some countries having overlapping and sometimes contradictory obligations. The need to ensure a consistent, and to the extent possible, harmonized legal regime for transit transport across the region is thus important.
(c) Trade and transport facilitation

Simplification and harmonization of transit transport documentation along transit routes and across the region could lead to immediate benefits in terms of a simplification of procedures and a reduction in transit costs and time. With the potential growth in transit transport through landlocked countries, both landlocked and neighbouring transit countries can benefit from actions taken to increase the efficiency of transit transport. As road transport takes on an increasingly important role in providing transit transport services, there is need to consider equitable approaches to the charging of transit/road maintenance fees.

(d) Promoting competition in the provision of transit transport services

Transport service providers from landlocked countries are sometimes restricted from offering services in the territory of their transit neighbour, even for the carriage of national goods in transit. Limited competition between operators, modes of transport and alternative routes may be resulting in inefficient pricing policies and services.

(e) Better monitoring

The cost/time diagrams utilized in the ESCAP case studies can provide countries with a snapshot of the current performance of transit transport routes. They can also provide policy makers with a clear view of the critical problems facing transit transport and a methodology for monitoring the impact of efficiency improvements. They could facilitate comparisons with other transit routes/border crossings within and outside the country, with a particular focus on, and the identification and transfer of, best practices.

(f) Enhancing transit infrastructure

Development of transport and information and communications technology (ICT) infrastructure, and particularly completion of the “missing-links”, would improve transit transport and enable landlocked countries to provide transit transport services to neighbouring countries. An integrated approach is needed to balance competing priorities in the development of road rail and other infrastructure. While alternative transit routes are important, volume and economies of scale contribute to the reduction of unit costs. The availability of a choice of routes will allow the trade and transport industries to select the most effective route on a commercial basis. The role of the private sector in providing and managing infrastructure facilities along transit corridors is still limited.

(g) Application of information and communications technology

ICT applications can assist customs authorities in undertaking their duties and in building a data bank of information. ICT applications can also effectively increase the efficiency of various processes within the transport sector, provide connectivity between neighbouring countries and increase the ability of shippers to track their goods.

(h) Capacity-building and human resources development for transit transport

Landlocked countries need to create a greater awareness of international developments with respect to transit transport and increase the capacity of government officials and private sector in addressing issues of concern.
B. Facilitation agreements

1. Resolution 48/11

The forty-eighth session of ESCAP109 adopted resolution 48/11 of 23 April 1992 on roads and rail transport modes in relation to facilitation measures, which recommended that countries in the region should consider acceding to seven international conventions in the field of international land transportation facilitation as a cost-effective prerequisite step towards enhancing road and rail transport routes throughout the region. Twenty-eight countries in the ESCAP region are members of the project.110

In order to facilitate the movement of goods, people and vehicles across international borders, there are around 50 international conventions. In the ESCAP region, the ESCAP secretariat has been working closely with the International Maritime Organisation (IMO) and the Economic Commission for Europe (ECE), the body designated within the United Nations system with responsibility for land transport conventions, in promoting a selected subset of these conventions. These include:

- Convention on Facilitation of International Maritime Traffic (FAL 1965) (1998 edition);
- Convention on Road Traffic (Vienna, 8 November 1968);
- Convention on Road Signs and Signals (Vienna, 8 November 1968);
- Customs Convention on the International Transport of Goods under Cover of TIR Carnets (TIR Convention) (Geneva, 14 November 1975);
- Customs Convention on the Temporary Importation of Commercial Road Vehicles (Geneva, 18 May 1956);
- Customs Convention on Containers (Geneva, 2 December 1972);
- International Convention on the Harmonisation of Frontier Controls of Goods (Geneva, 21 October 1982); and

The implementation of Resolution 48/11 has been supported by a number of ESCAP activities, including:

Seminars on implications of accession to land transport facilitation conventions for:

- ECO countries (Tehran, 15-17 November 1994);
- North-East Asian countries (Bangkok, 8-10 May 1996);
- Greater Mekong area (Bangkok, 26-29 November 1996);
- SAARC countries (Dhaka, 8-10 December 1997);
- World Bank/ESCAP regional technical workshop on South Asia regional transport and transit facilitation (Bangkok, 19-21 April 1999);

110 http://www.unescap.org/ttdw/
• national seminars for Myanmar and Thailand (Bangkok, April 1998); Hanoi and Vientiane (17-19 and 21-23 September 1998 respectively); for Bangladesh and India (New Delhi, 19-21 May 1999); Phnom Penh (31 May-2 June 1999); Beijing (19-21 July 1999);

A number of publications, including the proceedings of each of the above seminars as well as:

• "Transport Planning for Landlocked Countries: Transit and Border-Crossing Issues" (ST/ESCAP/1484, 1995);

In the period of 2001-2002, Azerbaijan acceded to the Convention on Road Traffic (1968) and Georgia acceded to the Convention on Road Signs and Signals (1968). Mongolia also ratified the Customs Convention on the International Transport of Goods under Cover of TIR Carnets (TIR Convention) in 2002, which made the TIR system operational from Europe to northern part of North-East Asia through Central Asia.

The Agreement for Facilitation of Cross-border Transport of Goods and People in the Greater Mekong River has incorporated major provisions of the seven conventions into its annexes which are being negotiated.

2. Subregional framework agreements

Countries of the region are also developing subregional framework agreements designed to facilitate the movement of goods, people and vehicles across borders.

(a) ASEAN

As well as promoting the FAL convention and the seven conventions contained in resolution 48/11, the ESCAP secretariat has assisted ASEAN in the development of a multimodal transport framework agreement, which will provide the basis for domestic legislation on multimodal transport.

The ASEAN Framework Agreement on the Facilitation of Goods in Transit was signed on 16 December 1998. Nine protocols on specific arrangements of transit transport were planned for implementation of the agreement. Following signing of the agreement, 3 protocols were concluded during the period of 1999 – 2000. Two protocols were signed in 2001 and 2002, namely, Protocol 5, the ASEAN scheme of compulsory motor vehicle third-party liability insurance, and Protocol 9 on dangerous goods. Four more protocols on transit routes and border posts and Customs procedures are expected to be signed in the near future: these will enable the practical operation of transit transport under the agreement.

The ASEAN countries are also negotiating the ASEAN Framework Agreement on the Facilitation of Inter-State Transport to simplify and harmonize requirements for cross-border transport.

(b) Greater Mekong Subregion

The Greater Mekong Subregion includes China (Yunnan Province particularly) and five ASEAN member countries, namely, Cambodia, Lao People’s Democratic Republic,

Myanmar, Thailand and Viet Nam. The Agreement for Facilitation of Cross-border Transport of Goods and People was signed by Lao People’s Democratic Republic, Thailand and Viet Nam on 26 November 1999. It was acceded to by Cambodia on 29 November 2001 and by China on 3 November 2002. Myanmar is expected to sign in the near future. The agreement is supplemented by 15 annexes and 3 protocols to form an operational system for cross border and transit transport. The negotiation on 7 annexes and 1 protocol was started in 2002 as the first of three stages to be totally completed in 2005.

(c) TRACECA

The Basic Multilateral Agreement on International Transport for the Development of the Transport Corridor Europe- Caucasus-Asia routes, and its technical annexes were signed by Armenia, Azerbaijan, Bulgaria, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Romania, Tajikistan, Turkey, Ukraine and Uzbekistan on 8 September 1998. An Inter-Governmental Commission (ICG) TRACECA has been established to administer and promote the agreement. The signatories to this agreement are also contracting parties of major conventions on international land transport formulated under the auspices of ECE. The basic principles and requirements for international land transport under the agreement are complemented by the conventions. A project on harmonisation of border crossing procedures commenced in 2001 to standardize the documents and control processes.

(d) ECO

The members of the Economic Cooperation Organisation (ECO), namely, Afghanistan, Azerbaijan, Islamic Republic of Iran, Kazakhstan, Kyrgyzstan, Pakistan, Tajikistan, Turkey, Turkmenistan and Uzbekistan, signed the Transit Transport Framework Agreement on 9 May 1998. In 2002, ECO undertook a reconciliation of the inconsistencies between the agreement and the Transit Trade Agreement signed on 15 March 1995. The eight annexes of the agreement will be in place after the reconciliation process.

ECO is making efforts to promote the application of the TIR Convention across the ECO region. The Central Asian countries issued 9,450 TIR carnets in 2002.

3. Bilateral agreements

In addition an increasing number of bilateral agreements have been concluded. See, for example, the Review of developments in transport in the ESCAP region, 2003.

PART FOUR: EXTENDING PRODUCTION SYSTEMS TO INLAND SITES IN ASIA

XI. INTERNATIONAL PRODUCTION SYSTEMS AND CONNECTIVITY OF HINTERLANDS

A. The “story”

In contrast to previous phases of globalization in world history, this time transport infrastructure development has been a major driver of far-reaching qualitative changes in the internationalization of production. In fact, the impressive growth of shipping in Asia is in large part due to the formation of regional production networks (RPN) in Asia, whereby countries specialized in the production of particular components which are shipped from one country to another until final product assembly, a process that is often referred to as “regionalization” (see Chapter VI). The following “story” captures the essential ingredients of this process:

In Asia, the process of internationalization of production gathered momentum in the mid-1980s, when a number of countries of the region started to lower their barriers to trade and investment. This was particularly the case in the newly industrializing economies (NIE) and ASEAN, which introduced outward-looking structural reform policies that moved away from import-substitution production towards export-oriented production. These policies included liberalization of trade and foreign direct investment (FDI) as well as deregulation of domestic economic activities, the aim being to stimulate economic growth.

The impact of these policies is often referred to as the “East Asian Miracle”. FDI inflows increased twelvefold and East Asian exports increased fivefold between 1985 and the “East Asian Crisis” in 1997. Annual economic growth during this period in these economies exceeded that of most other economies in the world. One of the features of the FDI was that the multinational corporations active in the region established factories that specialized in the production of specific components of finished goods. As a result, regional production networks (RPNs) were formed which in turn increased intra-industry trade within the region.

In considering the contribution of transport to the emergence of RPNs, it has been developments in the maritime sector that have been the primary motivation force. Probably the most important factor contributing to the massive productivity and cost savings in transport was the advent of the marine container and the container ship. Container ship since the 1970s increased more than five-fold to more than 5,000 TEUs in Post-Panamax Plus ships, in order to exploit economies of scale. In order to keep these ships moving, operators have introduced various network structures including mainline-feeder (hub-and-spoke) and pendulum services. These route structures, combined with increased ship speed and reduced time in port have reduced transit times and increased service frequency, many operators improving service reliability by introducing “day-of-the-week” calls at named ports.

Further, to achieve the significant productivity gains from the container and changes in shipping technology, complementary, large-scale investments have been required in seaports. Access provided by these seaport locations to international and domestic markets has attracted the FDI of corporations engaged in RPNs, a process which has received policy support through the development of industrial estates and special economic zones. As a result, it is mainly the coastal areas of East and South-East Asia have benefited economically from this process (Figure 15). These coastal areas are not only richer than inland sites but have seen much faster growth, too, exacerbating spatial inequalities in each of these national economies.

115 similar to those in other world regions, e.g., in Europe.
In addition, spatial concentration of economic activities, particularly in megacities, has been a key feature of rapid development in Asia. In essence, megacities have taken the role that special economic zones played in the past three decades. For example, Bangalore accounts for 25% of India’s software exports, with some 100,000 workers (or 0.01 percent of population) in the city producing 3% of India’s exports. Another key feature is sectoral concentration. There is surprisingly little overlap in the top product lines of quite similar countries.¹¹⁶

Figure 15: Night light density map of Asia and major ports. Night light density is a good proxy for GDP (linear relationship). Created with ESCAP’s GIS tool (TDDIS). Data source: NOAA.¹¹⁷

B. Vision

As it has been mainly coastal regions of Asia and the Pacific that have benefited from the current phase of globalization by becoming important nodes in the regional production networks, how could these international production networks be extended to all ESCAP member countries, their national hinterlands and even landlocked countries that currently face marginalization?

ESCAP’s strategy to support such an extension in the terms of its transport aspects is based on strong linkages to trade, investment and ICT, and it is predicated upon a model that promotes physical access to hinterlands and neighbouring countries. The model envisions a

phased approach which commences with capacity building in developing unimodal transport links and nodes of international importance. It then moves towards integrating the modes into an intermodal network. In parallel, the model envisions development of nodes that support increased efficiency of the system, adding value and creating employment in areas that are in danger of being marginalized in the globalization process. Such nodes may include a spectrum of functions ranging from inland container depots simply providing transfer facilities, the addition of value added logistics services to the nodes through to special economic zones. In implementing the model attention will be paid to both the development of infrastructure and operationalization of the network.

In particular, ESCAP has been focussing on the development of international transport corridors that have designated as priority by ESCAP member countries. This is the approach taken by ESCAP’s Trans-Asian Railway Network (TAR), the Asian Highway (AH), the Euro-Asian Linkages Project and other initiatives.

They provide pieces of an intercontinental Euro-Asian “puzzle” that is geared to promoting an extension of production networks. In essence the vision of such an extension follows the historical process transportation network development that leads to corridors, e.g., as it happened in North America and elsewhere in the world. Following the excellent description by Jean-Paul Rodriguez:\footnote{Jean-Paul Rodriguez. \url{http://people.hofstra.edu/geotrans/eng/ch7en/conc7en/corridordev.html}, accessed Sept. 2005. \textit{Note}: The original model is due to Taaffe, Morrill and Gould (1963).}

- **Phase A (Scattered ports).** A set of small trade ports are established along a coastline. They are connected to a wider network of trade and provide access to locally supplied resources.

- **Phase B (Penetration lines and port concentration).** Trade lines accessing the hinterland are constructed permitting the development of new resources and/or markets. The ports to which they are connected grow in proportion to the new traffic generated.

- **Phase C (Development of feeders).** The hinterland of penetrating lines is further expanded by the development of feeders.

- **Phase D (Beginning of interconnections).** The transport networks that have so far been developing independently gradually become interconnected. Intermediate centers also start to emerge.

- **Phase E (Complete interconnection).** As the level of connectivity increases, traffic tends to concentrate in the most connected ports (often corresponding to the largest cities), implying that several less well connected ports decline or disappear.

- **Phase F (Emergence of high priority links).** Economies of scale favor the concentration of the traffic along the most efficient links, supporting the emergence of transport corridors. Links having lower volumes can even be closed down. The regional transport system has thus reached a phase of maturity and the structure of the network is unlikely to change unless of significant economic or technological developments."

Countries of Asia and the Pacific are at various stage of this development process. ESCAP’s Asian Highway Network is aiming to support Phases B, D, and F of this extension.
network, as it will provide the backbone land transport network. In fact, in Section XII.A we will argue that upgrading the Asian Highway (everywhere to at least grade three) implies only a doubling of currently committed investments into the Asian Highway on the order of 20 billion US$. This amount is small compared to total financing needs in roads in Asia and the Pacific, hence the benefit of prioritization.

As population densities in East, South-East and South Asia are considerably higher than in North America, and more in line with those in Japan and Europe, it is likely that railways will play an increasing role in Asia in the future, to complement and substitute for road transport in the backbone network functions. In other words, a desirable vision of the land transport system of Asia would see a **re-emergence of railways (Phase G)** above. Early signs of this can be seen, e.g., in China today. Such a phase G would also have substantial environmental and safety benefits.

It appears that strategic transport infrastructure investment on a regional level could lead to a similar rapid growth pattern of those Asian countries that are currently facing marginalization.

The timeline for this process will vary from country to country, but an ambitious scenario would see all ESCAP member countries participating in and benefiting from the world’s most important regional production networks at least by 2030. Finally, it should also be noted that this extension process to inland sites would not come at the expense of coastal areas and port development. On the contrary, ESCAP container forecasts foresee a huge expansion of container shipping and berth development (see Box 3).

C. Remaining gaps

In order to make the desirable vision of a future transport system reality, a significant number of gaps and deficiencies remain which would need to be removed, and are, therefore, of particular interest to transport policy makers.

As a result of the emerging regional production networks organized along major ports in the region, the “benefits” of globalization have been confined to coastal areas. Another factor
contributing to the concentration of development in coastal areas of countries of the region has been inadequate land transport infrastructure and services connecting seaports to their deeper hinterland. A typical landlocked developing country has transport costs that are 50 percent higher and volumes of trade that are 60 percent lower than countries with coastal access.

For various historical reasons, land transport networks of UNESCAP member countries with maritime coastlines are oriented towards their major seaports; inter-country land transport linkages are not well developed; and goods in the hinterland of one country must follow a circuitous route to reach the hinterland of another country (if they move at all).

The “logical extension” of the ocean fleet to double-stack train services with direct transfer from ships to trains, as is the case in the United States, is one example of how integrated, intermodal, international transport services can change the concept of transport from that of a stop-start process to a smooth flow of goods and people. In parallel with the discussion on “globalization” considerable attention has been focussed on concepts such as “logistics management”, “supply threads”, “supply chains”, “value threads”, “value chains” and “production networks”. These chains and networks are being developed within an environment that encompasses physical trade and investment policies, and inputs including: human resources; infrastructure; services; and capital equipment. Each of these policies and availability of inputs will influence location decisions for each of the activities in the chain or network as well as the way in which goods, services and information flow through the chain or network.

Huge disparities in terms of land transport development persist in the ESCAP region. Essentially, in most places this development has only started. This also applies to port hinterland areas on the subnational level, including even the West of China.

In order to economically move inland sites closer to the coastal production networks, inland container depots (ICDs) have been promoted and connected efficiently to ports. The idea is to realize similar scale economies around ICDs as exist around ports. In fact, 80 percent of general cargo, as measured in terms of value and 50% in terms of weight, today move by containers. A recent ESCAP study119 reviewed the status of ICD development in Asia, clearly indicating that this process has just started and will require large-scale investments in the medium-term future.

Furthermore, there appear to remain major gaps in many ESCAP member countries in terms of addressing imminent urban transport issues. This is despite the fact that megacities have become the major nodes in international production systems. In fact, megacities have taken the place that export processing zones, special economic zones etc. have taken in the past. This raises a wide spectrum of policy issues that need to be addressed in a coherent fashion from the local to the national government level. ESCAP has been addressing these types of issues through a number of its programmes, including the creation of CITYNET, an institutional network of cities that promotes city-to-city cooperation.

119 Kim, O., (2005). Inland Container Depots of Asia, Draft report, ESCAP.
XII. INFRASTRUCTURE INVESTMENT NEEDS AND FINANCING

This chapter provides order-of-magnitude examples of investment needs and possible financing mechanisms that might be considered in extending fragmented, international production systems to inland sites in Asia, thus developing an Asian Integrated Transport Network.

A. Investment needs

By any measure, investment needs for transport infrastructure in Asia and the Pacific for the coming years are the largest of all world regions, due to burgeoning economic growth and further integration of Asian economies into the world economy. It should be noted that investment needs presented in this Chapter are sums of actually identified priority projects of governments. Of course, such a wish-list approach produces different estimates than those based on the usual econometric estimates which essentially assume a continuation of historical dynamics. In other words, numbers presented here are lower limits of what needs to be invested in order to achieve the desirable future targets. Yet, they are higher than estimates based on historical dynamics, implying a need to significantly increase infrastructure investments in the region.

1. International transport backbone network

The international backbone of the transport system consists of nodes such as airports, ports and ICDs, as well as inland links such as major railway lines and roads. In the case of Asia, the latter two have been formalized as Asian Highway and Trans-Asian Railway lines. In terms of international accessibility, these are the highest priority assets for investment purposes.

According to the annual forecast of ESCAP’s Maritime Policy Planning Model (MPPM), about 930 new container berths will be required in the world to meet the increased throughput in 2015. About 570 of these berths will be required in the ESCAP region and ESCAP estimates total investment needed at around US$36 billion for the ESCAP region, which is 65 percent of the total world investment needs. As inland sites in Asia are increasingly developed through ICDs and efficient intermodal connections, a similar level of investment will be required for the construction of ICDs in the future as for container ports today.

Under the recent ESCAP project on “Identifying investment needs and priorities for the development of the Asian Highway Network and related intermodal connections”, three subregional EGMs were organized in 2004 and 2005\(^{120}\) that reviewed the status of the Asian Highway network, identified investment requirements for the development of the network, including intermodal connections and prioritized projects of subregional importance. A consolidated picture from the Meetings indicates that about US$ 21 billion is currently being invested or committed for the development of various sections of the Asian Highway routes in member countries. The subregional meetings also identified a shortfall of about US$ 18 billion required to further upgrade and improve about 26,000 km of Asian Highway in 26 member countries.

The ESCAP Secretariat estimates immediate investment needs to be of the same order to magnitude as those of the Asian Highway. In addition to the more than 80,000 km of Trans-

\(^{120}\) For SAARC (with participation of Afghanistan and the Islamic Republic of Iran) on 21-23 Sept. 2004 in Islamabad; North, central and South-West Asia on 23-25 January in Tehran; and for South-east Asia (with participation of Mongolia) on 25-26 April 2005 in Bangkok.
Asian Railway (TAR) network, thirteen major missing links have been identified. They make up a total of 7060 km requiring roughly US$ 13.5 billion for construction of single track lines. Furthermore, several tens of thousands of TAR lines are still only single-track. To upgrade them to double-track lines would cost several tens of billions of dollars.

A significant share of global airport and air navigation services investment requirements of more than US$ 300 billion between 2000 and 2010 is being committed to airport infrastructure in the Asian and Pacific region, in order to cater for the growth in both passenger and cargo traffic and to accommodate new large aircraft and emerging budget airlines. Over the past decade major new airports in the Asian and Pacific region at Chubu Centrair International Airport (Nagasaki), Baiyun International Airport (Guangzhou), Kuala Lumpur (Kuala Lumpur International), Hong Kong, China (Chek Lap Kok), Imam Komeini International Airport (Tehran), Osaka (Kansai), Incheon International Airport (Seoul) and Pudong International Airport (Shanghai) required a combined investment of more than US$ 50 billion. Bangkok’s new Suvarnabhumi Airport is due to open in 2006 and new airports are being started at Bangalore and Hyderabad in India. Current plans are to continue the development of these new facilities, to upgrade existing hub airports and to construct completely new airports requiring at least another $20 billion funding by 2010. In the past two years in Asia and the Pacific, eight new terminal and building extensions have been completed, while work is underway for construction of three terminals and seven new terminals are planned.

2. Access networks and secondary and feeder routes

Typically more than half of a developing country’s government’s public maintenance and investment in the transport sector is in roads. This is also mirrored by the fact that roughly 70 percent of the World Bank transport loan portfolio remains to be for the road sector. This is despite the Bank’s policy change since the early 1990s to focus on direct poverty alleviation rather than an approach targeting merely economic growth. However, this shift and the full adoption of the results-based budgeting approach has led to an increased investment in rural access roads, in order to be able to define a clear target group of people whose poverty has been reduced as a result of the infrastructure intervention.

Financing of rural roads has become a big issue. The grand total for connecting all the currently unconnected villages (roughly 50 percent of the total) with all weather black topped roads has been estimated at US$ 26 billion (Rs. 1,11,000 crores), excluding the cost of major bridges. This compares with currently committed investments in the Indian sections of the Asian Highway, i.e., the road backbone network, of roughly US$ 3.6 billion. Similarly, the Chinese government plans to construct 400,000 kilometres of new rural roads to connect 80 percent of all villages in China by 2020, compared to currently committed investments of US$ 6.6 billion in the Chinese sections of the Asian Highway. This indicates that financing needs for rural roads in the region might be one order of magnitude larger than for the road backbone network.

As governments and donors have focussed on international connectivity on the one hand and access networks on the other hand, the part in between, the secondary and feeder roads have been increasingly neglected. In some cases, this has become a serious issue, as the efficiency of the road system depends on the state of all its links and nodes.

121 PMGSY project in India, http://www.pmgsy.nic.in/pmg216.asp
122 as of July 2004
No comprehensive estimates exist of financing needs for urban transport, including mass transit systems, in Asia and the Pacific. However, rough estimates of investment needs for urban transport are approximately as large as those for airports and seaports combined, or half of total investments into roads.

3. **Contributions of individual, private investments**

While the investments into road and railway infrastructures have been almost entirely public investments by the same government, the fact is often overlooked that such public investments lead to much larger private investments.

For example, for each dollar of public investment in new roads there are typically ten dollars of private investment (e.g., in cars, etc.) to make system operational and to be able to provide road transport services.

4. **Future liabilities for maintenance**

Besides investment costs, future liabilities for maintenance costs need to be taken into account. This applies especially to rapid nation rural road access projects. If a large share of the roads have a similar age, subsequent maintenance needs will also cluster at one point in time. A case in point are massive rural road projects in South Asia which, not surprisingly, coincide with serious underfunding for road maintenance. Similarly, road and rail maintenance is a major issue in Central Asia.

5. **Transport Investment needs to achieve the MDGs**

The question that is often asked is about approximate transport investments needed in order to help achieving the MDGs. The focus of the answers is then mainly on provision of rural access roads, and the replicability of direct poverty interventions is discussed. While this seems to be the obvious direction to take, it does not appear the most efficient approach. In this context, the comparison between poverty effects if infrastructure investments in China and India is often made. China’s phased focus first on international connectivity and later on domestic access has been more successful in overall poverty reduction but has led to higher inequality. While there are clearly problems with such a direct comparison, the superior performance of the Chinese infrastructure model is easily understandable for at least two reasons:

(a) Investment needs for transport backbone networks are only a fraction of those needed for providing nation-wide access, yet the economic benefits derived by countries are very large, even though they initially only accrue to few locations. If the investment needs discussed in this section are summed up, roughly US$ 120 billion per year would be needed in the ESCAP region for all transport modes from 2005 to 2015. Only US$ 22 billion of this sum would be for transport backbone networks, including ICDs.

(b) It is a simple logic that building a road to rural village will not make much difference if the linkage to the rest of the network are not well developed. In the end, what really counts is whether the infrastructure intervention improves the linkage to economic opportunities. The significant poverty alleviation effect in a corridor (with a width of walking distance) along inter-city trunk roads in India is a case in point123.

123 Study by the Asian Institute for Transport Development (AITD), 2004.
In conclusion, it appears that the most cost-effective transport infrastructure intervention for achievement of MDGs is a phased one that tries to adjust an optimal combination of international and domestic connectivity at any point in time.

B. Financing mechanisms

In view of the large investment needs identified in this study, countries will have to explore all possible financing options that are available to them, including traditional public expenditure, loans provided by development banks, official development assistance, and different types of private sector participation.

1. Private sector participation

(a) Current trends

A number of different mechanisms exist via which the private sector may participate in development projects in general, and in transport infrastructure projects in particular.

(i) Reduced private sector capital flows into the transport infrastructure development in the region

A recurrent ESCAP publication, the Review of Developments in Transport details trends in investments in transport infrastructure projects with private sector participation (PPI) in the ESCAP region and the rest of the world, between 1990 and 2003, and include management and lease contracts, concession, Greenfield and divestitures. Over this period, the majority of PPI projects in the ESCAP region, both in terms of the number of projects and their value in 2003 US dollars, were concession and Greenfield projects. The number and value of PPI projects in developing countries fluctuated dramatically between 1990 and 2003. In 1997, investment totalled $22.4 billion, before dropping rapidly in the following years. As a result, despite a modest increase between 1999 and 2001, in 2003 total PPI transport investment amounted to only $4.5 billion (Box 4).

124 All references to US$ value of PPI projects in this section from this point forward are in US$(2003).
The East Asian economic crisis greatly contributed to this contraction in private investment. Of all the ESCAP subregions, East Asia has historically received the greatest level of investment in transport infrastructure projects with private sector participation; on a global scale, it is second only to Latin America and the Caribbean. Since the crisis however, investment has never returned to its pre-crisis position, attributable to private sector wariness towards the risks of such investment.\(^{125}\) In 1996 for example, PPI projects in East Asia

Connecting East Asia: A New Framework for Infrastructure (ADB, Philippines)
totalled $8.5 billion; after a notable variation in the intermediary period, by 2003 this had plummeted to $1.7 billion.

(ii) Flows concentrate on few countries and few sectors

The aggregate value of PPI transport projects completed world-wide during 1990 and 2003 was over $120 billion, almost 40 per cent of which were in the ESCAP region. Yet this activity took place in only 16 ESCAP countries, and mainly in 5 countries, namely China, Malaysia, Thailand, The Philippines and Indonesia. Investment was greatest in the roads sub-sector (US$ 25 billion), which accounted for one half of all PPI transport projects. And over 50 per cent of these 188 road projects took place in China, where US$14 billion was invested. In the same period, investments in projects with private sector participation in ports totalled US$13.4 billion, in railways US$10.6 billion and in airports US$3.5 billion.

(b) Public-private partnerships

The 2005 and 2003 editions of the aforementioned ESCAP Publication *Review of Developments in Transport in Asia and the Pacific* includes a list of major PPI projects. It also discusses examples of institutional development, policy and regulatory frameworks that have been introduced recently, in order to promote private sector involvement in infrastructure development. One major issue is the general lack of seed financing for feasibility studies, in order to proceed governments’ project ideas to a stage where the private sector would get interested. This is a particularly acute problem in the smaller ESCAP economies.

2. Public sector

Traditionally it has been mainly the public sector that has directly borne the bulk of transport infrastructure investments. This is still the case in most ESCAP countries and particularly in the land transport sector, due to the concentration of private sector flows into few sub-sectors and few selected countries. As a result, the roles of private and public sector needs to be defined on a country-by-country and subsector-by-subsector basis.

3. Cross-border financing

As differences in living standards are very large in the ESCAP region and benefits of transport infrastructure development spill over national borders, the possibility of cross-border financing (well beyond the ODA type) has recently received increased attention. It is particularly discussed in the context of transit transport and landlocked countries, as well as in terms of seed financing. One example of actual cross-border financing is the construction of a road for transit through Lao PDR connecting China to Thailand (Box 5). Innovative financing mechanisms such as in this case, particular promise for the region, particularly when combined with some sort of private sector participation (e.g., through transit fees).
Indeed, the general case for regional cross-border financing of transport infrastructure is very strong, as illustrated by a recent ESCAP study on Central Asian Accessibility. This study illustrates the accessibility impact of road upgrades, based on a comprehensive view of Central Asian road system. Take for example the route between the nationally and internationally rather accessible Shymkent and the less accessible Aktyubinsk. Assuming an

upgrade of this route leading to a 10 percent increase in average speed along all links on the route, leads to significant improvements in potential accessibility127 not only nationally in Kazakhstan, but also internationally, thus showing large positive externalities across international borders (Figure 17). The positive changes in accessibility are quite striking along the route, and in places whose connectivity is dependent on this route128.

The few other existing examples of such cross-border financing (mainly in Europe) show that the great potential of such an instrument. However, they also show the need for adequate institutional mechanisms that are required for an efficient larger-scale application of such instruments and that are currently absent in the ESCAP region.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure17.png}
\caption{Changes in potential accessibility due to an upgrade of the road between Shymkent and Aktyubinsk, leading to an increase in speed by 10 percent.}
\end{figure}

4. Conclusion

Under any plausible scenario, the ESCAP region faces increased investment needs in transport infrastructure in the coming decades. In particular, this chapter identified the need to significantly increase overall infrastructure financing in all ESCAP member countries to the order of US$ 120 billion per year for the ESCAP region as a whole, in order to create an Asian integrated transport network for international production networks to be gradually extended to inland sites of Asia.

A major challenge for countries in the region has been the reduced private sector investment flows and their concentration on few countries and sectors. ESCAP members

\begin{flushright}
127 Geographical accessibility assesses the potential for interaction through the average time to reach places, while the potential accessibility is based on a gravity concept, where accessibility is a trade-off between attractiveness of places and the effort to reach them. More focus is put on the accessibility of the largest/capital cities than on other places, as these cities are more likely to function as growth poles.

128 This study also showed that the potential accessibility generally follows the same rank size rule as that for city population. Consequently, a focus on improvement of interconnection of major cities has the greatest impact on potential accessibility within the transport system.
\end{flushright}
have been exploring new financing mechanisms. A major constraint in attracting private sector participation has been the lack of seed financing that would be needed to for initial feasibility studies. Selected examples exist that show the great potential for possible cross-border financing and other innovative financing.
PART FIVE: POLICY RECOMMENDATIONS AND WAY FORWARD

XIII. STRATEGIES, PROGRAMMES AND ACTIVITIES FOR CONSIDERATION

A. Introduction

The principal theme running through and highlighted in this paper is that of networks. Globalization can be interpreted in terms of increased specialization, interdependence and integration. International and regional production networks (IPNs and RPNs) as well as value-added chains can be considered as being an integral part of the process. Infrastructure networks (transport, ICT) can be assigned a leading role in supporting the development process. Interventions that provided greater access to infrastructure networks and services can be argued as necessary in order to reduce poverty. Strategies being adopted by the private sector in providing transport and ICT-related services can be described in terms of the formation of various types of network configurations. Transport logistics and the wider “value chain management” can be shown to have their foundation in network concepts; and regionalism.

1. Transport

For various historic, political, economic and topographical reasons inter-country transport of goods and people by land on the Asian continent has been negligible. Since the late 1980s, however, there have been major political and economic changes in the economies of Asia whereby more outward looking and cooperative policies have been adopted. These changes have created an atmosphere that is more conducive to the development and promotion of international land transport.

Considerable progress has been made over the last decade or so in moving towards increased inter-country movement of road transport in Asia and the basic framework for these movements is being set in place. Examples include the financing and development of domestic road transport networks of regional importance; the formalization of inter-country road linkages and establishment of their design standards under the auspices of the ESCAP Intergovernmental Agreement on the Asian Highway, signed by 26 governments at Shanghai in April 2004; and the construction of new inter-country roads, for example in the Greater Mekong Subregion. Similarly, a draft agreement on the Trans-Asian Railway has been finalized in November 2005 for possible adoption by the Commission and opening for signature at a Ministerial Conference in 2006.

The provision of inter-country road transport infrastructure is, however, a necessary, but not sufficient condition for the movement of inter-country traffic. There is a need to meld together the various physical, non-physical, production, service, governance and social networks. One of the steps in this process is to ensure that non-physical barriers are minimized. Most of these can be removed through accession to and implementation of various international conventions.

These efforts need to be continued. However, the absence or low level of development of effective regional networks in Asia whether these be in infrastructure, information or knowledge are acting as a constraint to development and participation in the globalization process. What is needed now is to direct resources towards implementation, operationalization and capacity building.
Clearly, the central role of regional initiatives is to cooperate in the building of the trunk routes, backbone or transmission lines of the network, with feeder, local and distribution networks that provide access to intra and interregional networks being developed nationally or locally.

One direction in which current efforts are moving is towards the development of corridors. This for example is the case for TRACECA, the UNECE/UNESCAP Euro-Asia Transport Linkages Project and the three corridors of the GMS Project. In network terminology, the strategy is concentrating upon specific paths through networks, thereby providing focus for activities and tangible demonstration effects.

2. ICT

The issues to be addressed in the modern ICT sector are similar in nature to those in transport. Similar mechanisms for regional cooperation and sharing of resources are slowly being developed. It is somewhat surprising that so few real agreements and sharing arrangements have been achieved at the regional level so far. This appears to be due to the earlier misexpectations of a death of distance and geography in general due to the revolutionary nature of the Internet. In fact, it appears that the opposite is true. Due to increasing returns, closeness to major ICT centres is more important than ever before and land-locked countries face the same types of constraints as in terms of transport.

There is a clear need for regional cooperation in the development of a high capacity international Internet backbone for Asia, with a particular focus on a fixed-line, land-based part for the land-locked Asian countries.

The major difference between the modern ICT and transport sectors that has to be taken into account in the design of strategies and programmes, is a rather huge range of time scales due to the hardware/software paradigm, and the different significance of the role of regulation and competition policies at the national level.

B. Strategies

In developing strategies for regional cooperation and integration in the field of infrastructure, it is instructive to draw upon recent experience. In this respect the work of the organizations and programmes considered in Chapter VII and listed in the Annex provide some insight.

1. Insights from the GMS Project

In general terms, a strategy is a plan designed to achieve a particular long-term objective. For the GMS project, “The ultimate objective of subregional economic cooperation is to facilitate sustainable economic growth and improve the standard of living of the people in the subregion”129. It is further noted that “subregional programme and projects should reflect a balance among economic growth, human resource development, poverty reduction and environmental protection”.

Over the period from August 1992 (the date of commencement of the ADB’s technical assistance for the GMS) and the third conference (April 1994), broad areas of cooperative effort had been identified, sectoral studies had been conducted to identify impediments to

subregional economic cooperation, and consensus had been arrived at on priority subregional projects.

In the transport sector, roads emerged as a high priority with the Third Conference agreeing upon: (i) the Bangkok - Vung Tau Road Project; (ii) the Thailand-Lao People’s Democratic Republic - Viet Nam East-West Corridor Project; and (iii) the Chiang Rai - Kunming road Improvement Project. The Conference also agreed that the consultants’ Final Report should consider legal and other impediments to coordination in the transport sector.

Since the Third conference, these projects commenced and a significant percentage of works have been completed; a Cross Border Agreement for the movement of goods and people was signed and the protocols and annexes are being negotiated; and the above mentioned road projects evolved into a concept of more broadly based economic corridors.

One of the insights that can be gained from this experience is the step-by-step nature of the strategy. This approach is conditioned by the need to obtain consensus among members, the relatively long planning and construction periods, and the need for demonstration of progress. In this last respect the Third Conference noted that “a viable, even symbolic project at the earliest stages would do much to enhance the cooperative spirit in the subregion”.

In addition to reaffirming the objective of regional economic cooperation, the Third Conference reaffirmed a number of other “general principles” including the importance of linkages among sectors and the necessity of the participation of the private sector.

Over the intervening period of time since the Third Conference, the importance of networks and networking in most areas of human endeavour has emerged.

Experience in the GMS has also shown that the “plan to achieve the long-term objective” does not need to be detailed and have rigid time schedules. In many respects the strategy evolves as the plan proceeds. For example, the priority roads identified in the early stages of the project evolved into the North-South, East-West and Southern Economic Corridors.

2. High-level strategy

In order to achieve the goal to support economic development and to promote greater equity through better connectivity, in particular through the extension of the regional production networks to the Asian hinterlands, the highest level of a strategy may include the following:

i. Develop infrastructure;

ii. Promote specific corridors and paths through networks;

iii. Ensure traffic moves smoothly across border and through countries;

iv. Select specific nodes to create demonstration effects (e.g., one-stop-shops at border crossings, ICDs, etc.);

v. Support development of RPNs and SMEs;

vi. Build institutional and human capacity;

vii. Promote focus and commitment to the goal;

viii. Involve all relevant stakeholders in the process (including the private sector);
ix. Set in place mechanisms for identification, analysis and development of policy options to address persistent and emerging issues and systemic risks before they arise (early warning systems).

3. Network-related elements of a strategy and related implementation modalities

On a lower level, there are a number of elements of a strategy as well as modalities for its implementation. Looking at the various infrastructure issues through the lense of the many physical and non-physical networks opens up the possibility to design new and consistent strategies to tackle the issues. For example, we can make use of concepts and tools that were developed for analyzing networks in many disparate disciplines, we can make use of new technological opportunities, better exchange of information, and have a better understanding of fundamental relationships between the various networks.

In the following text, eight elements that such a strategy could incorporate as well as some modalities for their implementation are outlined. These elements can be applied to regional cooperation and integration in general; infrastructure more broadly interpreted to include physical, non-physical, institutional and social networks; specific traditional infrastructure sectors; or even infrastructure sub-sectors.

(a) Adopt a network approach to target high impact issues and locations

It is proposed that network and cluster concepts and tools are used to target high impact issues and locations. For example, with these tools, bottlenecks in the system (e.g., network interconnection points) can be identified and the quantitative tools (e.g., graph theory) and network models can be used to investigate the impacts and means of removing such bottlenecks.

Often a corridor or path approach to operationalization (implementation) is useful, whereby specific paths or corridors are identified and a concerted effort is made by all concerned parties to operationalize the path or corridor. Typical steps in this process may, inter alia, include: (a) identification of all relevant physical and non-physical barriers on the corridor; (b) a focus on infrastructure development on the path or corridor; (c) support for initiatives to facilitate movement along the path or corridor; (d) support for HRD in commercial aspects of operationalization of the path or corridor.

(b) Create sectoral strategies with a systems view to melding physical and non-physical networks

Cross-sectoral and even sectoral strategies should be designed taking a holistic systems view of melding physical and non-physical networks. Similarly, networks should not be regulated in isolation from each other. Where trade, transport and ICT networks are melded together, they should be regulated together.

(c) Identify clusters to organize participatory approaches to policy and decision-making

The strategy should include a cluster approach that incorporates all relevant stakeholders to organize participatory approaches for policy and decision-making. Such an approach can increase transparency and democratic accountability. It is of paramount importance that the policy level (e.g., committees etc.) are included.
(d) **Organize regional institutional networks of research organizations and government agencies in order to increase just-in time awareness for better policies**

Strategies should routinely include the organization or at least consultation with existing institutional networks of research organizations and government agencies, such as CITYNET, LOGOTRI, APETIT, ANTLER, etc. As many of these institutional networks have been created by United Nations ESCAP in the past, it is possible to relatively easily learn from a variety best practices of creation of regional institutional networks. It should be noted that these networks are institutional, independent and undertake their own activities, which is a major difference to many of the recent networks of a purely informational nature.

Such institutional networks are best organized along the lines of existing networks and clusters. In addition, networks of information can be used for awareness creation that ultimately will influence policy making. A major challenge is usually to encourage analytical studies on relevant issues and to make research findings available in appropriate form to decision-makers.

(e) **Use modern knowledge networking tools and processes to create new forms of regional collaboration**

Modern Knowledge networks drawing on new developments in networked companies and smart communities that have emerged since 1998 could play a key role for governments to steer networks into the right directions. While many so-called “knowledge networking” initiatives exist in governments and international organizations, almost none of them actually deserves that name, since they often are purely informational in nature and do not draw on knowledge standards of any kind. Yet, both tools and processes have been tested amply by networked dot-com companies in the past 6 years or so which often had to draw on rather low-key infrastructures.

Such new types of knowledge networks when applied to governments could eventually lead to new forms of horizontal and vertical regional governmental and non-governmental collaboration. They could also serve as mechanisms for monitoring progress in operationalization of the paths or corridors.

(f) **Introduce regional risk management strategies that address systemic risks**

A strategy should include not only provisions for project or programme risk management, but also look at a higher level of regional risks. In some instances, the latter may be much larger than the former. Similarly, the strategy should not focus solely on financial risks, but also include economic, political, regulatory, technical, organizational, stakeholder, environmental risks and force majeure.

Regional risk management should address the issue of possible emergence of incompatibilities of certain regional standards with those on the global level.

In general, risk management should also address systemic risks, so that eventually their consideration will become a standard input for policy making. The key question to ask in the strategy is whether all inherent risks have been adequately quantified and a strategy developed to deal with them.

(g) **Develop strategies based on analytical studies (“Research Agenda”)**

Policy and decision-makers need to be able to be aware of and understand the various policy options and their impacts. While academic research results exist in various disciplines on the nexus between globalization, infrastructure, development and the role of regional
cooperation, these have not been made available in a suitable and comprehensive form for policy makers. Analytical studies of a number of key issues drawing from all relevant disciplines and especially focused on the situation of developing countries, economies in transition and land-locked countries in Asia and the Pacific are needed, so that decision-makers can draw on a menu of options and understand some of the long-term consequences of their actions.

Key issues to be analyzed in the context of Asia and the Pacific include, inter alia:

i. **Forces for and against globalization:** While there is a generic, intuitive understanding of the contribution of network infrastructure to globalization (and vice versa), the details, particularly as they relate to hinterlands and land-locked countries are not well understood. A comprehensive view taking into account physical and non-physical networks needs to be taken to analyze the interplay of the various forces operating for and against globalization.

ii. **Balancing competition and strengthening of networks (“co-opetition”):** Governments face the challenge of balancing competition and the strengthening of networks. Strategies need to be explicit on this point, in order to avoid an ideological view. In fact, the “strength” of physical and non-physical networks in many Asian countries have not been studied in detail. There is a lesson to be learnt from the situation in Internet communications for the more investment-intensive transportation networks.

iii. **Implications of full cost pricing of transport modes:** A common policy advice of economists, international donors, and agencies alike has been to move toward full cost pricing to eventually recover all economic (and possibly also environmental and social) costs. As full-cost pricing (similar to increased energy prices) will have differential impacts on coastal areas vs. hinterlands, scenarios are needed to better understand the implications. Another related question is whether we are in effect “subsidizing globalization”, since full cost pricing of transport modes is not applied in most parts of the world.

iv. **Inefficiencies in the logistics system:** Will land transport always be at a disadvantage? Since there are currently enormous inefficiencies and unofficial payments in the logistics system of many countries, one might argue that transport costs are of relatively minor importance in overall logistics costs.

v. **Impact of urbanization:** What are the impacts of continued urbanization on infrastructure networks and the competitiveness of hinterlands in the current wave of globalization?

vi. **Possible political implications of increased regional cooperation and integration:** An OECD report in 2001 on trade blocs states that the political impetus to integration has often been “based on the belief that increasing trade would reduce the risk of intraregional conflict”\(^\text{130}\), as evidenced by the examples of ASEAN, APEC, the EU\(^\text{131}\) and the CACM\(^\text{132}\), which “include potential political and military opponents.”\(^\text{130}\)

\(^{131}\) Similarly, the preamble to the 1951 treaty establishing the ECSC, out of which the EU grew, stated its aim as follows: “To create, by establishing an economic community, the basis for broader and deeper community among peoples long divided by bloody conflicts.” The OSCE Ministerial Council in Maastricht (2003) goes even further and declared “Convinced that more effective co-operation by all the OSCE participating States on an equitable, mutually beneficial and non-discriminatory basis to counteract threats and challenges caused by economic and environmental factors, can make a crucial contribution to security, stability, democracy and prosperity in the OSCE region”; OSCE Strategy document for the economic and environmental
(h) **Develop regional strategies (“Strategy for Regionalism”)**

While inter-agency coordination mechanisms (such as CCA and UNDAF) exist at the national level for the work of donors, international organizations and governments, no such mechanism exists on the regional level. It would be highly beneficial to have at least some sort of a regional strategy for Asia and the Pacific in the area of regional cooperation in infrastructure. A “regional” version of the CCA or UNDAF frameworks may be worthy of consideration.

It appears to be advisable to go even a step further and to work toward a “strategy for regionalism” that is shared by the countries in Asia and the Pacific. Such a strategy would not only set a common vision and broad goals for the various forms of cooperation and partnerships between organizations, but it could set voluntary, broad “ground rules” for current and future bilateral, plurilateral and subregional cooperation initiatives. Alternatively, a number of “strategies for regionalism” could be worked out by different country groupings that would, however, coordinate with each other.

C. Programmes

![Diagram of Potential Programme Structure]

Figure 18: Schematic outline of potential programme structure

Figure 18 shows the schematic outline of a potential programme structure. Due to the strong commonalities between the various network infrastructures, this appears to be a reasonably generic structure that is equally applicable to transport, energy and communications. This is despite the fact that the term “facilitation” is not used so commonly in energy and communications. However, most of the issues are similar, including addressing for example transit agreements, incompatibility of regulatory regimes, cross-border taxation, customs, etc.

132 Central American Common Market
Major programme areas include (Figure 18):

- Assembly and dissemination of what we already know (including good practises);
- Reactivation/revitalization/reenergization of what we have done already;
- Identification, prioritization, financing and development of infrastructure requirements;
- Facilitation of cross-border and transit;
- Private sector and enterprise development, e.g., building capacity of freight forwarders and multimodal transport operators

Figure 18 focuses on the infrastructure, facilitation and commercial aspects of infrastructure. There are other aspects including social and environmental fields that would need to be included in a comprehensive programme.

D. Activities

Following the suggested programme structure, we have come up with twelve types of activity groups, that are classified into three areas, namely infrastructure, facilitation and operationalization.

1. Infrastructure

(a) Maintenance and upgrading of existing assets

In some countries of the ESCAP region (e.g., CIS), maintenance of existing infrastructure assets should be the highest priority, as future rehabilitation or reconstruction costs will far exceed the cost of timely maintenance. However, maintenance of infrastructure is not perceived as a high-profile activity by governments and, therefore, tends to be too often neglected.

Whether the focus will be on upgrading or maintenance ranges widely depending on the country and the subsector. For example, upgrading to larger capacities dominates the ICT sector, in contrast to the energy and transport sector

(b) Financing of infrastructure maintenance and development

A strong political case needs to be made for increased provision of adequate funds for infrastructure maintenance, as deteriorating infrastructure still imposes large resource costs.

The pros and cons of taxation of road, rail, air and water transport users to cover the marginal cost users impose on society (e.g., road deterioration, traffic congestion and environmental costs) should be explored on sector by sector basis.

(c) Administration of agencies responsible for physical infrastructure

The capabilities of many agencies are limited, due to financial and human resources constraints and systemic issues. Similarly, the capacity of regulators of newly privatized markets are often inadequate.

Some of the administrative systems in the region are of an extremely hierarchical nature. This applies in particular to the case of economies in transition, where administrations in the past had to serve the needs of a centrally planned economy. Strong hierarchies often do not
meet today’s requirements of a fast-changing environment. The introduction of devolution and decentralization policies in many countries of the region has compounded these problems and needs to be addressed on a priority basis.

(d) **Increasing competition and private sector participation**

While increased competition can be a means of increasing the efficiency of resource allocation, competition issues related to networks and infrastructure in general are serious challenges for many countries in the region.

Institutional arrangements to promote private sector participation (PPP) need to be promoted, including PPP units and the setting-up of regional institutional networks of such units. While best practices in competition and PPP issues have been documented, models for replication are needed that are tailored to the needs of the countries in the region and that can be readily implemented by them.

(e) **Commercial networks and clusters**

Commercial networks are some of the most important non-physical networks. They themselves and their linkages to the physical networks need to be strengthened. Recently, an approach to organize participation and even implementation through existing commercial and industrial clusters have been used in projects (e.g., by UNCTAD).

(f) **Social networks and participation**

Social networks can be utilized for awareness creation and to organize participatory approaches to infrastructure development, particularly on the local level. Recently, many countries have increased local involvement, for example, in the construction and maintenance of rural roads. There appears to be a general trend toward decentralization in the provision of infrastructure facilities. The strength of social networks in the context of infrastructure could be supported by networking Web tools.

(g) **Infrastructure development at transit nodes**

Multimodal transport offers benefits, particularly to land-locked countries. Land-locked countries together with their transit neighbours, need to consider the development of adequately equipped inland container depots and dedicated warehousing facilities at the interface between different modes of transport. In this context, the use of financial and economic planning models should be promoted in partnership by various organizations.

2. **Facilitation**

(a) **Accession to international conventions**

In order to accelerate the process of accession to these conventions, policy makers may wish to consider initiating the following activities: (i) translation of international conventions
into national languages for wider dissemination and better understanding; (ii) convening
national seminars for awareness creation and discussion of various issues involved; (iii)
setting up national transport facilitation committees, chaired by a high-level authority, say a
minister or deputy minister; (iv) formulating of national action plans for acceding to the
international conventions; (v) organization of training programmes for efficient
implementation of the conventions as well as for creation of national transport associations;
(vi) sharing experiences in implementation of the conventions, on a technical cooperation
between developing countries (TCDC) basis; and (vii) examination of domestic legislation
with a view to ascertaining the changes which may be necessary to incorporate the provisions
of international road transport conventions.

Similarly in the communications sector, issues such as interconnection agreements and
charges, and implementation of international standards need to be addressed.

(b) Institutional mechanisms for facilitating transit transport

In order for countries to accede to international conventions there is a need to understand
the implications and benefits of the conventions, and to establish the committees and bodies
necessary to accelerate the process of accession. There is also a need to monitor and promote
the implementation of the agreements at the policy and operational levels. Various
institutional mechanisms for facilitating transit transport should be explored.

(c) Harmonization of rules and regulations

The harmonization of rules and regulations can lead to major reductions in transport costs.
These may include (i) the simplification and harmonization of documents and procedures for
border-crossing and transit; (ii) common standards and certification in such areas as road
safety, vehicle and driver testing and road permits; (iii) adoption at the bilateral, subregional
or international levels of driver licensing and vehicle standards; (iv) harmonization of axle-
load regulations; and (v) introduction of mutually acceptable third-party insurance documents.

(d) Mechanism to tackle soft infrastructure issues

Soft infrastructure includes standardization, harmonization and simplification of transit
policies, regulations, formalities, procedures and documents as well as institutional issues.
Soft infrastructure is particularly important for transit trade and border-crossing. For the land-
locked countries, the issues of transit and border-crossing cannot be separated from those
relating to the facilitation measures in general.

The following issues might be considered: (i) provisions to facilitate trade; (ii) measures
relating to official control, to the promotion and use of standards, to customs operations, to
commercial trade practices, to payment procedures, to insurance, and to the use of ICT; (iii)
network relevant committees and bodies; and (iv) measures could be incorporated in bilateral
and multilateral arrangements.

3. Operationalization

(a) Human resources development

It is necessary to ensure that the officials responsible for the day-to-day application of the
various conventions, agreements, rules and regulations, fully understand their provisions.
There is also a need to strengthen the freight-forwarding and clearing industry, particularly at
the small and medium-scale levels.
(b) Information systems and corridor studies

Modern information and decision-support systems can support the planning, development and maintenance of infrastructure facilities, to facilitate transit traffic, identify bottlenecks, and monitor adherence to agreements. Also, corridor studies are an effective means of identifying the impediments to transit traffic and can form the basis for developing action plans.

(c) Commercialization and enterprise development

In the case of the least developed countries and the economies in transition of Asia and the Pacific, one of the major constraints in implementation or operationalization has been insufficient capacity by institutions including the private sector. Enterprise development and promotion of related commercialization activities need to be supported in these countries.

(d) Regional coordination and consistency

An overall strategy for regional cooperation in infrastructure is needed, in order to ensure consistency between the many bilateral, plurilateral and subregional agreements and other initiatives. In particular, strategic frameworks and monitoring systems might be developed within which inter-country, subregional, regional and international projects and programmes can be efficiently implemented. Similarly, mechanisms for ensuring consistency with and between infrastructure-related networks at the various levels (national, subregional, regional and international) would be very useful.

(e) Promotion of demonstration projects

One of the most powerful means to convince relevant stakeholders that change is possible is to demonstrate by example. Consequently, promotion of, for example, demonstration runs of container block trains or joint border facilitation at specific sites is an effective means of developing integrated transport systems. The development and dissemination of examples, case studies and good practises, for example, those cited in Chapter IX of this document also make an important contribution to demonstrate the feasibility and direction of change.

XIV. SELECTED INSTITUTIONAL PROPOSALS FOR CONSIDERATION

Part two of this study provided a glimpse of the wealth of regional cooperation initiatives for transport infrastructure development in Asia and the Pacific (see Annex I for more details). There are many conceivable, potential “ways forward” for the region in terms of such cooperation. The purpose of this final chapter is to provide selective, rather ambitious “futuristic” proposals for future regional cooperation that could be promoted in Asia and the Pacific in the next 25 years. The focus is on institutional regional mechanisms rather than elements of a “work programme” (see previous Chapter). Only initiatives are included that could potentially be promoted by ESCAP. 133

1. Strengthening existing financial institutions and the need for new specialized ones

In order to meet the large and increasing infrastructure financing needs in all countries of the ESCAP region throughout for the next 25 years, current means of financing must be strengthened and new innovative ways explored. For example, the Asian Development Bank (ADB) and the World Bank (WB) must be strengthened. However, most likely, their lending

volumes will not be sufficient and mainly geared to lending to sovereign countries due to their mandate and institutional setup.

Consequently, this study confirms earlier calls for the need of new financial instruments such as an Asian Investment Bank (AIB), following a similar rationale as in the case of the European Investment Bank (EIB) by focussing on lending to the private sector for infrastructure investments. It should also be note which continues to complement the work of other institutions such as the EBRD, OECD (Marshall Plan), European Structural and Cohesion Funds, TEN financing mechanism and national reconstruction banks that were created after WWII.

In addition, there are three compelling reasons for the need of an AIB in addition to the already existing ADB:

a) Need to bring the decision-making process on infrastructure financing back to the region: In fact, large elements of the process still remain outside the region which may lead to different priorities. For example, the strong voice members of ADB and WB members from outside the Asian region dates back to a time when these members provided the bulk of international infrastructure financing after WWII.

b) Need for a more inclusive approach: None of the current financial institutions operating regionally in Asia and the Pacific have the same comprehensive membership as ESCAP. In fact, from the perspective of the Asian transport system it is imperative to include countries like the Russian Federation, the Islamic Republic of Iran and DPR Korea in any such arrangement.

c) Need for leveraging more private financing, particularly from within the region: ADB and WB still mainly lend to sovereign countries, even though much of their work has increasingly moved to co-financing options with the private sector and technical assistance.

It should be noted that the ADB was established under the auspices of ESCAP in 1966, in order to address the then pressing needs of lending for infrastructure to governments in the region. Its institutional setup also reflected the fact that most of this financing came from outside the region. Today’s much larger role of the private sector, the increased weight of Asian economies in the world economy, and the large saving rates in Asia are facts calling for a new bank lending to the private sector primarily for infrastructure projects, run by Asia for Asia, to fill in the remaining financing gaps.

2. Trans-Asian Networks

It is envisaged that AIB would provide financing in the transport, communication, energy, and water sectors for infrastructure projects of:

d) Regional importance: This would involve the development of “Trans-Asian Networks” (TAN), similar to the existing frameworks of “Trans-European Networks” (TEN) together with the “Transport Infrastructure Needs Assessment” (TINA) mechanism in the European Union. With the regard to the land transport sector, TAN would be based on the Intergovernmental Agreement on the Asian Highway and the planned agreement on the Trans-Asian Railway. Essentially, TAN should include a joint financing mechanism for infrastructure of regional, international importance. For example, the possibility of 10 percent seed financing of regional projects could be explored, based on the rationale of positive cross-border externalities.
e) **National importance:** In particular, financing support seems critical for *feeder route, rural and urban transport access programmes* that are promoted by governments (such as PMGSY in India).

It is suggested that the AIB promote an *increase in overall infrastructure financing* in all ESCAP member countries by a factor of four on average. In addition, the AIB would explore *new approaches to lending*, including, for example, the lending to supranational bodies, the provision of seed money, and the development of new financing instruments that are tailored to the region’s specific needs.

Even though the following suggestions are worth exploring in their own right, they would ideally be carried out under the common umbrella of a future AIB or a relevant financing institution:

3. **Seed financing**

There is a need for a regional mechanism to providing money for feasibility studies to make potential infrastructure projects “ready” to attract domestic and international private sector investors. In fact, the insufficient size or complete lack of such seed money has been a major constraint to private sector participation in infrastructure development in the region. We, therefore, suggest the creation of an Asia-Pacific Fund for Financing and the Promotion of Private Investments in Infrastructure. The role of such a fund would be (a) to provide money to PPP units or relevant government departments for feasibility studies of infrastructure projects; (b) to serve as a clearing house for more effective pipelining/screening of projects; (c) to promote marketing of projects to investors; (d) provide technical assistance to PPP units and related departments on legal instruments and to certify standards.

The proposed fund would ideally be an independent entity (under the AIB umbrella), in order to avoid the types of conflict of interest that are sometimes seen in the case of development banks which are eventually interested in providing a loan for the full project. In terms of institutional setup, it could follow a system of quotas and some kind of “special drawing rights” and an Executive Board as in the case of the IMF. Similarly, resource allocations could be adjusted based regulatory criteria that enable PPPs, thus creating positive incentives for member governments to reform their legal framework for PPPs, following the same idea as the regulatory incentives in the case of EMEAP’s regional bond fund ABF2.

4. **Public-private partnerships**

More generally, there is a need to *strengthening public-private partnership (PPP) capacities*. In particular, more technical assistance on legal and economic instruments is needed. In this regard, the creation of an *Asia-Pacific Network of PPP Units* as is currently promoted by the ESCAP Secretariat could play a role. Furthermore, *innovative co-financing options and modalities need to be explored*. The proposed Fund could play a catalytic role in this regard. Co-financing options should be explored not only with private sector, but also between countries. In fact, we have a shown a strong rationale for international co-financing based on the size of positive cross-border spill-overs of transport infrastructure investments, e.g., as measured in terms of potential accessibility (Chapter XI).

134 In essence, it would be single, trusted entry point for investors interested in investing infrastructure in Asia, thereby to cutting investors’ search costs for good projects.

135 ESCAP study shows these are on the order of 10% for highway projects in Central Asia.
5. Research and demonstration capacities

There is a need for increased financing of regionally important research and demonstration capacities, in order to improve the understanding of (a) the overall cost-benefit of transport investments (including on the regional level), and (b) their relationship to the achievement of MDGs. In the longer term, the region might want to create an Asia-Pacific framework for R&D cooperation in transport and communication technologies and their demonstration, operationalization and deployment. Such a framework could be based on joint private-public sector financing and management of major research and demonstration projects in infrastructure of international importance, such as regional transport and communication backbone networks. This would help leveraging the emerging research capacities in the region and could be based on existing partnerships such as AP* in the case of communication.

6. More efficient use of existing infrastructure

There is a need for initiatives to promote the more efficient use of existing infrastructure. Examples include:

a) Improving cross-border facilitation through the creation of an Asia-Pacific “Single Window” for Cross-border Customs, Trade and Transport Facilitation: Rather than going through a lengthy bilateral and regional harmonization of cross-border practises, a single system might be jointly developed by all interested countries in the region. This would not only be much more cost-effective, but also provide additional marketing benefits and be of particular interest for smaller economies, as well as for the economies that have not yet proceeded very far in adopting their own e-trade system, i.e., almost all economies of the Asia and the Pacific. Operational models for such a regional “single window” might be fully private-sector driven based on concessions provided by an intergovernmental organization. Such an approach would also make the governments’ networks more international and on par with powerful regional and global networks of multinational “flagship companies”.

b) Addressing the proliferation of transport-related agreements in the ESCAP region through a comprehensive monitoring, policy analysis and technical assistance mechanism for transport-related international agreements: This would include all agreements on transit, cross-border facilitation, infrastructure development, standards, financing, policy coordination, investments, and sharing agreements. This monitoring mechanism should come up with policy suggestions and provide technical assistance to governments interested in joining and/or implementation of such agreements (including information on the costs and benefits of such agreements). In particular, relationships to the evolving complex webs of trade and investment agreements need to be clarified (Chapter VII and Annex I). Initially, such a function could be kick-started by the ESCAP Secretariat, to be “spun off” thereafter.

c) Exploring options for bilateral and subregional infrastructure sharing and development agreements: One could imagine many such sharing possibilities, particularly in the case of landlocked countries, ports and dry ports.

136 The framework could be organized along the lines of the model pioneered by the ACTS programme of the EU.
d) Promotion of improved infrastructure asset management and maintenance: In particular, the creation of road funds for maintenance has been promoted by ESCAP for many years.

e) A special Infrastructure Investment Forum of Pacific island countries could to be held on a regular basis, in order to promote private sector investment in the rather specific case of small island developing countries. A similar forum might be created for least-developed landlocked countries.

7. Regulatory reform and competition

Finally, innovative regulatory reform could go a long way in further improving efficiency, creating a fairer level playing field, and providing incentives to better tap the increasing pool of Asian savings for infrastructure development, beyond the purely financial efforts of regional bond funds such as ABF2 and related initiatives. First and foremost these are policies and regulations that target cross-border investment behaviour:

Firstly, there is a need for a better coordination mechanism for regional and industrial policies in Asia and the Pacific, particularly as they relate to the development of transport infrastructure of regional importance. Regional and industrial policies, in particular with respect to transport infrastructure development (including issues such as tax breaks and the designation of special economic zones, etc.) have been major tools of governments in the region to promote foreign direct investment of multinationals, in order to fully integrate their economies into the regional and international production and distribution networks. In some cases, uneven market power (“flagship networks”) has led to the undesirable fact of more competition between governments and less competition between companies. A strong international policy coordination mechanism could help reversing this undesirable trend. Optimally, such a mechanism would also incorporate an institutional network of policy research organizations and universities that would provide policy recommendations on IPNs and related issues.

As a second step, regional institutional mechanisms could be explored that can set binding rules for cross-border infrastructure investments in the region. A regional approach that is focussed purely on infrastructure could have more potential for realization than the much more ambitious MAI initiative of the OECD in the 1990s. In addition, in contrast to the OECD grouping of countries, the Asia and Pacific region consists of economies that either receive a lot of investment from outside the region or receive only a negligible amount, to date, thus providing more incentives for the realization of some kind of Asian MAI.

In the longer term future, ideally the creation of an Asia-Pacific competition authority would have major benefits for the region. The initial focus of such an agency could be on the ports and shipping sector. At a later stage, other sectors might be added. In fact, the creation of such a competition authority for the ports and shipping sector has been recommend earlier by the World Bank: “As a consequence of (i) the spreading of port concessions in specific traffic niches, like container terminal operations, and (ii) the relatively few number of international professional operators in the market, a new form of competition limitation develops along regional coastlines, crossing countries boundaries. It becomes now possible to anticipate that in the short run, one or two terminal operators may control a string of terminals on a given range, therefore establishing a new case of dominant position at a regional level. The appropriate answer to this situation should at first sight come from regional economic cooperation bodies, which should therefore be vested with specific authority regarding competition in transport services on a regional scale.” However, to date, the implementation of this important issue has not yet been pursued in Asia and the Pacific.
B. Regional Cooperation in Asian Land Transport Development

Parts Two and Three identified a particular need for policy intervention in the land transport sector. In this sector, deep concerns have been voiced that hinterlands, regions of countries, and land-locked countries, located far away from the centres actively participating in regional production networks, will be marginalized. In order to address this risk, governments of the region have increasingly engaged in the development of interregional, regional, subregional and national policies for land transport.

This Section provides an overview of the major ongoing regional and subregional cooperation initiatives in land transport in Asia. In order to illustrate the level and the types of existing cooperation.

1. Regional initiatives

(a) Early forerunners (1959-1992): Asian Highway and Trans-Asian Railway

Asian cooperation initiatives of a truly regional nature of continental geographical coverage have been rare. Even subregional initiatives encompassing a handful of neighbouring countries have been a rather recent phenomenon (see next Section).

In fact, up until the late 1980s, there were only two significant regional cooperation initiatives in Asian land transport that had a fairly comprehensive geographical coverage: the Asian Highway (AH) and Trans-Asian Railway (TAR) projects of the United Nations Economic and Social Commission for Asia and the Pacific (ESCAP).

The Asian Highway Project was initiated in 1959 by the then United Nations Economic and Social Commission for Asia and the Far East (ECAFE) that was later renamed later to ESCAP. This initiative was followed by the Trans-Asian Railway Project, which was commenced in the 1960s by ESCAP with the objective of providing a continuous 14,000 km rail link between Singapore and Istanbul (Turkey), with possible onward connections to Europe and Africa.

The international events that punctuated the 1960s, 1970s and early 1980s, coupled with inward looking policies of many counties and lack of funding for the projects, influenced the momentum of these two initiatives. However, the dynamic economic, trade, investment and tourism development in the region since the 1980s, as well as the concomitant adoption of outward looking policies, positive changes in the political environment and the advent of container technology, have resulted in the revival of a keen interest in regional cooperation as a means of improving and developing intraregional and interregional land transport linkages.

Until today the Asian Highway and the Trans-Asian Railway have played a pivotal role in regional cooperation in land transport, both in terms of their achievements as well as models for many subregional initiatives of the past 15 years. These are described in more detail below.
The revived interest since the late 1980s led to the creation of the Asian Land Transport Infrastructure Development Project (ALTID) by ESCAP in 1992. It is essentially an umbrella project, comprising the Asian Highway and the Trans-Asian Railway projects, as well as components related to the facilitation of cross-border land transport.

The strategy of the ALTID Project for the development of both the Asian Highway and the Trans-Asian Railway networks includes assisting countries in identification and formulation of routes, setting standards, formalization of the networks, putting the networks into operation or “operationalization”, integration of the various modes of transport (road, rail, inland waterways and shipping), and integration of transport networks with other relevant networks or “melding of networks” (freight forwarders, multimodal transport operators (MTOs), banking, customs, health, security etc).

In regard to the formulation of road, rail and road-cum-rail routes, it was decided that existing and potential trade flows should be the main factor for route selection. Reflecting this factor, the criteria include:

- capital to capital links (for international transport);
- connections to main industrial and agricultural centres (links to important origin and destination points);
- connections to major sea and river ports (integration of land and water transport networks); and
- connections to major inland container terminals and depots (integration of road and rail networks).

- connections to major tourist attractions (in the case of the Asian Highway).

The two basic principles, however, are to minimize the number of roads and railway lines to be included in the networks and to make the maximum possible use of the existing infrastructure. A refined strategy for the implementation of the ALTID project was adopted in 1998 that, inter alia, called for the formalization of the Asian Highway and the Trans-Asian Railway.

The Asian Highway project has aimed to enhance the efficiency and development of road transport infrastructure in Asia. The key tenets of the project have been to promote international and bilateral trade and tourism to encourage regional economic and social development.

The Asian Highway network now comprises approximately 140,000 kilometres of roads, passing through 32 member states (Figure 19). The ESCAP Secretariat supported the conversion of the Asian Highway Project into an Intergovernmental Agreement.

The Intergovernmental Agreement on the Asian Highway Network was adopted in November 2003 by 32 member States and has entered into force on 4 July 2005. To date,

137 Endorsed by the Economic and Social Commission for Asia and the Pacific at its forty-eight session in 1992.

138 These criteria were endorsed by ESCAP’s Committee on Transport and Communications.

139 As of 7 November 2005.
28 member states have signed the Agreement and thirteen140 have ratified, approved or accepted it. These commitments clearly indicate the importance of developing the regional transport network in the Asia-Pacific region.

The main obligations of the Contracting Parties within the Agreement are to:

- adopt the Asian Highway network as a coordinated plan for the development of highway routes of international importance;
- bring the network in conformity with the Asian Highway classification and design standards; and
- place Asian Highway route signs along the network.

The Agreement also established a Working Group on the Asian Highway to review its implementation. The ESCAP secretariat acts as secretariat for the agreement. The Agreement plays a catalytic role in the development of international highways in the Asia-Pacific region. UNESCAP Resolution 60/4, adopted at the 60th Commission session at Shanghai in 2004, invites international and regional financing institutions and multilateral and bilateral donors to provide financial and technical support for the development of the Asian Highway network and related infrastructure, particularly taking into account the special needs of landlocked developing countries (see Box 6).

Supported by the ESCAP Secretariat, member countries have identified a list of priority projects and prepared project profiles for potential donors. The highest priority has been given to the upgrading of substandard sections of the Asian Highway. ESCAP aims to play a role in the dissemination of high priority projects that have not yet received adequate funding, but are of an importance that, if realized, the whole Asian regions would benefit.

140 These include Armenia, Azerbaijan, Bhutan, Cambodia, China, Japan, Mongolia, Myanmar, Pakistan, the Republic of Korea, Sri Lanka, Uzbekistan and Viet Nam.
Figure 19: Map of the Asian Highway, 2003. Source: ESCAP
(d) The Trans-Asian Railway after 1992

Similar to the case of the Asian Highway, the Trans-Asian Railway Project has aimed to enhance the efficiency and development of rail transport infrastructure in Asia, thereby promoting international and bilateral trade and regional economic and social development.

Given the extent of the territory covered by the Trans-Asian Railway (Figure 21), the differences in standards, and differences in the levels of technical development between railways in the region, a step-by-step approach was adopted to define the network, initially based on four major corridors and with a focus on break-of-gauge points and missing-links. In addition, “software” aspects were reviewed with particular attention to tariff-related issues and the institutional framework pertaining to the passage of goods across borders.

With support by ESCAP and OSJD, four demonstration runs of container block trains along different routes of the northern corridor of the Trans-Asian Railway were carried out between Nov. 2003 and July 2004 (Figure 20), based on a ministerial-level Memorandum of Understanding (MOU) and Steering Committee Meetings (SCM).

![Figure 20: ESCAP-promoted demonstration runs of Container Block-trains along the TAR Northern Corridor](image)

It should be noted that a container block train between Western Europe and the Far East that travels at about 1,000 km per day on average would have at least seven days advantage in transit time as compared to sea transport.

141 China, Kazakhstan, Mongolia, the Republic of Korea, and the Russian Federation have signed the MOU at the ministerial level. Relevant authorities of DPR Korea have indicated their agreement in principle. The other participating countries are Belarus, Germany and Poland.
Figure 21: Map of the Trans-Asian Railway, September 2005 (Source: ESCAP Secretariat).
The demonstration runs have already been followed by more than 200 commercial container block trains between 2004 and 2005142. However, all routes in the northern corridor of TAR connect at some stage with the Trans-Siberian main line, whose current capacity of around 300,000 TEU per year will soon become a constraint143. This illustrates the benefits of exploring and developing also other routes.

Similar to the earlier case of the Asian Highway, a draft intergovernmental agreement on the Trans-Asian Railway has been adopted in November 2005 at ESCAP, and it is expected to be adopted by the 62nd session of the Commission and opened for signature at the Ministerial Conference on Transport to be held in 2006. Looking beyond the Agreement, the formalization of the Trans-Asian Railway network constitutes one step towards the identification of an international intermodal network covering the continent as mandated by the Ministerial Conference on Infrastructure held in Seoul, Republic of Korea, in November 2001.

Box 6: Asian Landlocked Countries, ESCAP and the Almaty Programme of Action (APA)

Of the 30 landlocked countries in the world, 12 are located in Asia, namely: Afghanistan, Armenia, Azerbaijan, Bhutan, Kazakhstan, Kyrgyzstan, the Lao People’s Democratic Republic, Mongolia, Nepal, Tajikistan, Turkmenistan and Uzbekistan.

Each of these countries is disadvantaged by dependence on a limited number of commodities for their export earnings and a lack of access to sea ports and international markets. These factors contribute to lower levels of income, high costs of imports and decreased competitiveness of exports. In most cases, the transit neighbours of landlocked countries are developing countries, often of broadly similar economic structure and with problems of their own, including scarcity of resources. Transit developing countries bear additional burdens deriving from transit transport and its financial, infrastructural and social impacts. Also, transit developing countries need to improve technical and administrative arrangements in their transport, customs and administrative systems to which their landlocked neighbours are expected to link.

Over the years, international attention has focused on the special situation of landlocked countries. The international community has recognized and in part addressed some of the constraints faced by landlocked countries through international legal instruments (e.g., the Barcelona Convention of 1921, the New York Convention of 1965, and UNCLOS in 1982). More recently, there has been increased recognition of the dependencies between land-locked and transit countries which has provided a new impetus to increased regional cooperation. The Lao People’s Democratic Republic for example, has been referring to itself as being “land-linked” and not “land-locked”.

The United Nations convened an International Ministerial Conference of Landlocked and Transit Developing Countries and Donor Countries and International Financial and Development Institutions on Transit Transport Cooperation at Almaty, Kazakhstan, in August 2003. The Conference adopted the Almaty Programme of Action (APA): Addressing the Special Needs of Landlocked Developing Countries within a New Global Framework for Transit Transport Cooperation for Landlocked and Transit Developing Countries, and the Almaty Declaration. The work of ESCAP in the area of landlocked and transit countries focuses on implementation of the APA. APA aims to: (a) secure access to and from the sea by all means of transport, (b) reduce costs and improve services so as to increase the competitiveness of their exports, (c) reduce the delivered costs of imports, (d) address problems of delays and uncertainties in trade routes, (e) develop adequate national networks, (f) reduce loss, damage and deterioration enroute, (g) open the way for export expansion, (h) improve the safety of road transport and the security of people along the corridors. The five priority areas of APA are: (a) policy improvements, (b) improved rail, road, air and pipeline infrastructure, (c) international trade measures, and (d) technical and financial international assistance.

142 Source of information: OSJD.

143 In fact, containers carried along the Trans-Siberian line have increased from 48,800 in 2001 to 119,000 in 2003, with a majority of cargo destined for and originating in Finland.
UN Special Programme for the Economies of Central Asia (SPECA) since 1997

At the request of, and following consultations with the Central Asian Republics144, the United Nations Economic Commission for Europe (ECE) and the Economic and Social Commission for Asia and the Pacific (ESCAP) jointly initiated a programme in 1997 focusing specifically on economic issues of concern to those countries.

The UN Special Programme for the Economies of Central Asia, or SPECA, assists the participating countries to strengthen cooperation for their economic development through more efficient use of resources and facilitation of their integration into Europe and Asia. The implementation of the programme started by selecting priority areas for national and regional actions, and setting up project working groups in those areas. This includes a Project Working Group (PWG) on Transport and Border Crossing (TBC). The PWG adopted an Action Programme for Transit Transport Cooperation for SPECA Countries (APTTTC).

SPECA activities on “enhancing transit infrastructure” include, inter alia: (a) accession to multilateral agreements on infrastructure (AGR, AGTC, AH Agreement, etc.); (b) road and rail infrastructure asset management; (c) promotion of favourable legal environment to attract investments; (d) identification of priority projects; and (e) logistic centre pilot projects.

Euro-Asian Transport Linkages since 1997

As noted earlier, there are large and increasing overall trade volumes between Europe and Eastern Asia: 3.2 million TEU from Eastern Asia to Europe and 7.2 million TEU in the other direction in 2005145, almost all of which is currently transported by sea. ESCAP has promoted a number of initiatives to improve “Euro-Asian Linkages” along land routes. These efforts are geared to opening up the almost untapped potential of land transport infrastructure in this respect. Furthermore, they are also promoting infrastructure development in order to improve transport linkages between Central Asia and Europe, as well as between East Asia and Central Asia.

Series of St. Petersburg Conferences since 1998

At the initiative of the Russian Federation, and with support of ESCAP and ECE, a series of Euro-Asian Conferences on Transport were held in St. Petersburg since 1998. The 2nd such conference in Sept. 2000 identified four main Euro-Asian transport corridors as the backbone network: the Trans-Siberian146, TRACECA147, Southern148, and the North-South Corridors149. The third such conference in Sept. 2000x and Afghanistan in 2005.

144 Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan. Azerbaijan joined in 2000x and Afghanistan in 2005.

145 Source: Containerisation International.

146 Europe (PETCs 2, 3 and 9) – Russian Federation – Korean Peninsula - Japan, with two branches from the Russian Federation to: (a) Kazakhstan – China; and (b) Mongolia – China.

147 Eastern Europe (PETCs 4, 7 8, and 9) – across Black Sea – Caucasus – across Caspian Sea – Central Asia. TRACECA was initiated as a programme more than 10 years ago by the European Union (EU) as an additional route to the existing transport corridors and promotes optimal integration with the Trans-European Networks (TENs).

148 South-eastern Europe (PETC 4) – Turkey – Islamic Republic of Iran with two branches to: (a) Central Asia – China, and (b) South Asia – South East Asia/Southern China
2003 recommended a strategy for the development of an Integrated Euro-Asian Transport system, as well as support measures and a number of specific initiatives.150

The strategy focuses, inter alia, on: (a) formulation of integrated intermodal international Euro-Asian transport routes/corridors and networks; (b) formalisation of international transport routes/networks through related international agreements or amendments to existing ones, as a basis for their coordinated development; (c) facilitation of transport at border-crossings and ports based on relevant international conventions; (d) analysis of routes/corridors; (e) operationalization of international transport routes and periodical performance evaluation; (f) development of Public-Private Partnership with freight forwarders and multimodal transport operators.

Specific initiatives were recommended in the areas of infrastructure development, modern freight technologies, attraction of transport infrastructure investments, promotion and development of tourism, information technologies, safety and environment, improvement and rationalization of customs procedures and simplification of border crossings, as well as in expansion of access to the market of transport services.

\textit{(ii) OSJD Agreement 1997}

In the railway sector, the Organization for Cooperation of Railways (OSJD)151 concluded an Agreement on organizational and operational aspects of combined Euro-Asian transport in 1997. This agreement identified a number of Euro-Asian railway corridors and routes.

\textit{(iii) Project of the United Nations Regional Commissions since 2002}

An example of inter-regional cooperation in all modes of land transport is the United Nations project “Capacity-building in developing interregional land and land-cum-sea transport linkages”152 since 2002. It is implemented jointly by the five United Nations Regional Commissions, namely the Economic Commission for Europe (ECE), the Economic and Social Commission for Asia and the Pacific (ESCAP), the Economic Commission for Latin America and the Caribbean (ECLAC), the Economic Commission for Africa (ECA) and the Economic and Social Commission for Western Asia (ESCWA).

The common approach adopted in the project is to use the regional transport networks which have been developed by the respective regional commissions as the basis for identifying major interregional routes which can be further developed through cooperative strategies by participating countries. These strategies range from the sharing of information on the current conditions of infrastructure and future investment plans; assessment of bottlenecks which hinder the smooth transit of goods, particularly at border crossings and inter-modal nodes; and the exchange of ideas and experiences on approaches to removing such bottlenecks.

149 Northern Europe (PETC 9) – Russian Federation, with two branches: (a) Caucasus – Persian Gulf, and (b) Central Asia – Persian Gulf.

150 ECE document number TRANS/2004/12

151 http://www.osjd.org/

152 This project was funded through the UN Development Account.
In the ECE-ESCAP153 and the ECE-ESCWA-ESCAP154 components of the project, countries have agreed on a set of major road, rail and inland water transport routes linking the two continents.

2. Subregional initiatives

While the Asian Highway and Trans-Asian Railway networks have been formulated from national networks, they now form the primary corridors for interregional, subregional and national movement of goods and people. In so doing, the subregional networks provide more inclusive access to subregional hinterlands while national networks provide even more comprehensive access to national hinterlands. Consequently, regional cooperation plays an important role in not only developing inter-country linkages but also in promoting physical access at the national level.

(a) Subregional intergovernmental organizations

The major part of subregional cooperation in transport is promoted under the frameworks of subregional, intergovernmental organizations, such as ASEAN, ECO, FORUM (see Section XIV.C), SCO and SAARC, which cover a multitude of economic sectors. There is also the CIS and IGC-TRACECA consisting of a number of countries, located inside and outside of the region, which formed part of the Former Soviet Union. Yet, these subregional organization are rather diverse in nature with significant differences in terms of the depth of integration and types of cooperation.

(i) Association of South-East Asian Nations (ASEAN) since 1967

The Association of Southeast Asian Nations or ASEAN was established on 8 August 1967 and now has ten members155. ASEAN is particularly active and has established some 20 bodies for the transport sector, on the working group, senior officials and ministerial level.

The most recent instruments of regional cooperation are the ASEAN Vision 2020, the Bali Concord II, and the Vientiane Action Plan. In the Vientiane Action Plan the Heads of State and Government of ASEAN member countries committed themselves to gearing-up ASEAN transport as a critical logistics and services support sector through the implementation of the ASEAN Transport Action Plan for 2005-2010156. The Action Plan focuses on cooperation activities towards facilitating seamless movement of peoples and goods; enhancing integration and efficiency of multimodal transport infrastructures, facilities and services; accelerating open sky arrangements; and advancing liberalisation in air and maritime transport services.

(ii) Commonwealth of Independent States (CIS) since 1991

\begin{itemize}
\item 153 Participating countries: Afghanistan, Armenia, Azerbaijan, Belarus, Bulgaria, China, Georgia, the Islamic Republic of Iran, Kazakhstan, Kyrgyzstan, Moldova, Romania, Russian Federation, Tajikistan, Turkey, Turkmenistan, Ukraine, and Uzbekistan.
\item 154 Participating countries: Iraq, Syria, Jordan, Saudi Arabia, Kuwait, United Arab Emirates, Palestine (OPT), Egypt, the Islamic Republic of Iran, Pakistan and Turkey
\item 155 ASEAN members: Indonesia, Malaysia, Philippines, Singapore, Thailand, Brunei Darussalam, Viet Nam, Lao Peoples Democratic Republic, Myanmar and Cambodia.
\item 156 adopted at the 10th ASEAN Transport Ministers Meeting held at Phnom Penh in November 2004
\end{itemize}
The Commonwealth of Independent States (CIS)157 was created in 1991. In 1993, an Agreement on the creation of an Economic Union was signed, in order (a) to form a common economic space grounded on free movement of goods, services, labour force, capital; (b) to elaborate coordinated monetary, tax, price, customs, external economic policy; (c) to bring together methods of regulating economic activity; and (d) to create favourable conditions for the development of direct production relations.

Joint activities of the member states in the development of transport and communications systems are guided by the Transport Coordinating Committee. In 1998, a protocol on international roads of CIS was adopted, which lists CIS international roads and prescribes classification and design standards.

(iii) \textit{Economic Cooperation Organization (ECO) since 1985}

The Economic Cooperation Organization (ECO) is an intergovernmental regional organization158 established in 1985 as the successor organization of Regional Cooperation for Development (RCD) which was active between 1964 and 1979. The organization has been active in the transport sector, signing a Transport Transit Framework Agreement in 1998, which includes a list of prescribed road, railway and inland waterway transit routes159.

A guiding framework for the organization’s work is the ECO Vision 2015 which was adopted in 2005. Inter alia, it includes commitments to remove physical and non-physical barriers in transport (including reconstruction of missing-links), to operationalize container and passenger train initiatives, and to support APA, the Asian Highway and TRACECA.

(iv) \textit{South Asian Association for Regional Cooperation (SAARC) since 1985}

The South Asian Association for Regional Cooperation (SAARC)160 was established in 1985. A Technical Committee on Transport was established to work on land, sea and air transport. Its activities have included seminars, workshops, training, exchange of data and information, preparation of status papers (including on transit facilities), compilation of database and directories of consultancy centres for transport sector.

Recent areas of cooperation also include transport safety, rural transport, environmental aspects, and energy conservation. However until recently, SAARC has not made significant progress in re-establishing its transport network. Prospects have improved since the SAARC Summit of 2004. Also since 2004, the Asian Development Bank and SAARC, formalized through an MOU, work on a SAARC Regional Multimodal Transport Study.

\begin{footnotesize}
\footnotetext[157]{At present CIS members include: Azerbaijan, Armenia, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Russian Federation, Tajikistan, Turkmenistan, Uzbekistan and Ukraine.}
\footnotetext[158]{Current members are: Islamic Republic of Iran, Pakistan, Turkey, Afghanistan, Azerbaijan, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan.}
\footnotetext[159]{The formal adoption of the network has yet to be approved.}
\footnotetext[160]{Members: Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka}
\end{footnotesize}
(b) Other arrangements

Besides the dominant work of subregional, intergovernmental organizations mentioned above, there is an increasing number of other programmes, projects and initiatives with elements of subregional cooperation in land transport. Noteworthy examples include, inter alia:

- the Brunei, Indonesia, Malaysia, Philippines East ASEAN Growth Area (BIMP-EAGA);
- Indonesia, Malaysia, Thailand-Growth Triangle (IMT-GT);
- Indonesia, Malaysia, Singapore-Growth Triangle (IMS-GT);
- ASEAN Mekong Basin Development Cooperation (AMBDC);
- Greater Mekong Sub-region (GMS); and
- the Ayeyawady-Chao Phraya-Mekong Economic Cooperation Strategy (ACMECS).

Most of these organizations and programmes aim to complement each other and the Asian Highway and the Trans-Asian Railway.

C. Regional cooperation in maritime transport development

Regional cooperation in maritime transport takes significantly different forms in the case of the coastal regions of the Asian continent and its major economies, than in the case of small island developing states (SIDS) in the Pacific. There are big differences in terms of the driving forces, the issues, goals and the nature of such cooperation. These are discussed subsequently in this Section.

1. Shipping along coastal areas of major Asian economies

Arguably, the system of container ports and shipping has been the most important backbone network of the current phase of globalization. Furthermore, the evolution of international production and distribution networks has been strongly shaped by global changes in liner shipping due to changes in technology, such as the advent of the container and increasing container ship sizes and speeds. In fact, the size of container ships has increased several-fold since the 1960s, in order to make use of available economies of scale. This has emphasized even further the hubs-and-spokes character of the global shipping and ports system. In essence, large ships service hubs, whereas smaller second-generation vessels are deployed on feeder routes.

Consequently, in the last fifteen years, we have seen significant changes in container shipping route structures. There has been a trend away from the provision of direct liner services and towards the establishment of networks centred on regional hub ports. Carriers that previously only serviced major routes have joined networks servicing secondary routes.\(^\text{161}\) As direct calls by mainline vessels tend to make economic sense for any major market that is only a short deviation from the main shipping routes, we see on average two to four port calls of mainline vessels in each main world region today.

In line with investment rapid increases in trade from and to Asia, the region has seen large investments in seaports, including investments by state owned or controlled ports such as Singapore; Hong Kong, China; and others. Shanghai port alone has grown by more than 3 million TEU in 2004, which was larger than the total throughput of Felixstowe at the time. Yet, major infrastructure bottlenecks and issues remain even in North-East Asia.

As ship sizes continue to increase, faster container handling is necessary just to keep up. Otherwise extended port time would destroy the rationale for the bigger ships. Port congestion has become a problem, even for developed countries, with the possibility of congestion surcharges becoming more common. Furthermore, it appears that almost every port seems to want to be a “mega hub”. Yet, in reality only few will be able to become a hub, otherwise there might be “more hubs than spokes”.

Concentration of ownership has increased appreciably in the market for international liner shipping over the past twenty years, yet it is still lower than in some other transport industries. Profitability appears not be that high, even though investment in new capacity continues to be high. This is despite the existing agreements between shipping lines, where “conferences” have been the traditional form of cooperation designed to fix freight rates. Conferences have somewhat declined in importance, whereas discussion agreements have become more important as a mechanism for influencing freight rates on most major trade routes.

The market trends outlined above have led to further consolidation, concentration, and an increasing importance of co-opetition and strategic alliances in shipping. In particular, the emergence of powerful, “global” port operating companies with increasing market power should be noted. For example, P&O Ports operates 27 container terminals and logistics operations in over 100 ports in 18 countries. In fact, earlier this year, Drewry Shipping Consultants Ltd. summed up the changing market situation as follows: “Ten years ago: Shipping lines could take the view that whatever their demands were (e.g. bigger ships, more volumes, more port calls), ports would and could respond. When shipping lines said ‘jump’… ports said ‘how high?’ Today: The pendulum is swinging the other way. Ports (and inland infrastructure) are influencing shipping lines more. When shipping lines say ‘jump’… ports say ‘we’d like to, we want to, we will if we can……but it’s not quite as simple as that anymore…….’”

In the past, the case for exemption from competition law for the shipping liner market was made based on the theoretical possibility of “destructive competition”, due to its natural monopoly character. But there continues to be a lack of empirical evidence in support of this concern. In contrast, examples of other less collusive market arrangements have emerged with no indication of “destructive competition” in the market place. Also, there are close parallels between the international liner

163 but they do not occur on European trade routes
164 http://portal.pohub.com/portal/page?_pageid=36,1,36_31151:36_32101&_dad=pogprtl&_schema=POGPRTL
shipping market and other sectors which are natural monopolies, such as airline travel, which also shows a similar hubs-and-spokes system. For example, liberalized airline travel in the USA has led to large consumer benefits and the economy as a whole 166.

The one type of “destructive competition” that has occurred is the one between some governments which got involved in pushing “their” ports and connections over those of neighbouring countries, beyond any economic rationale. In fact, this situation is due to insufficient competition in the market place rather than too much. It appears to be due to a fundamental imbalance between global networks of shipping lines and port operators and the national confines of governments. It appears that governments will only be able to redress this imbalance through promoting competition between these businesses on the international level, through regional and international cooperation initiatives.

2. Small island developing states (SIDS) in the Pacific

Regional and subregional cooperation in transport of small island developing states (SIDS) is promoted mainly by the UNESCAP Pacific Operations Centre (EPOC) and the Pacific Island FORUM which are discussed in this Section. In addition, since 1994 the Global Action Plan for small island developing states (SIDS) has been a guiding framework for regional cooperation in the Pacific and beyond.

(a) Global Plan of Action for Small Island Developing States (SIDS)

Small Island Developing States (SIDS) around the globe share a set of common challenges related to transport and communications issues that are somewhat specific to these economies. In fact, in the case of the Pacific the severity of these issues is even greater than elsewhere due to extremely large distances. The UN Global Conference on the Sustainable Development of Small Island Developing States, at Bridgetown, Barbados, in 1994, highlights those issues and adopted a long-term Plan of Action. This Plan forms the basis of much of regional cooperation activities in the field of transport and communications in the Pacific.

Transport and communications are the lifelines linking small island developing States with the outside world, with each other and within their own countries, and are an important means of achieving sustainable development.

However, distance and isolation have resulted in relatively high transport costs, including high transport insurance costs, for many small island developing States. The quality and frequency of international shipping and air services are largely beyond the control of island States. Domestic markets are too small to provide economies of scale and the remoteness of many rural and outer-island communities constrains options and increases costs. While national airlines are necessary to serve the local market, especially in archipelagic States, they tend to fragment the regional market. The constraining influence of those factors on the sustainable development of island countries cannot be underestimated.

In order to overcome these problems, the Action Plan of the Barbados Conference in 1994 recommends the following focus areas for interventions in the transport and communications sectors: (a) addressing the environmental uses associated with transport development, including quarantine and land transport; (b) devising

166 In this context, it should be noted that the US example allows operational agreements relating to marketing and service rationalisation which are extensively used.
innovative approaches to resolving transport problems, such as low-cost methods for moving cargo; (c) infrastructure asset management; (d) infrastructure investments.

While confirming the Global Plan of Action of 1994, the Mauritius Strategy for the Further Implementation of the Programme of Action for the Sustainable Development of Small Island Developing States \(^{167}\) adopted in 2005 puts greater emphasis on communications and ICT aspects, in addition to transport, as well as on regional cooperation mechanisms in air land and sea transport.

(b) **ESCAP Pacific Operations Centre (EPOC)**

The objective of the ESCAP Pacific Operations Centre (EPOC) in Fiji, which was established in Vanuatu in 1984 is to provide technical assistance to Pacific island countries at the specific request of their respective Governments (19 ESCAP members and associate members) in a wide range of economic and social fields. Regional advisory services were provided in (a) the preparation and review of port master plans; (b) evaluation of port rehabilitation projects; (c) environmental and socio-cultural impact of port development; planning, development, operation and maintenance of shipping facilities to outer islands; (d) review of port regulations and tariffs; and (e) capacity building of engineers, management and operations personnel.

(c) **Pacific Island FORUM**

The Pacific Island Forum \(^{168}\) represents the Heads of Government of all the independent and self-governing Pacific Island countries, Australia and New Zealand. Since 1971 it has provided member nations with the opportunity to express their joint political views and to cooperate in areas of political and economic concern. The Forum meets each year at Head of Government level. Immediately after this, the post-Forum dialogue is conducted at Ministerial level with Forum dialogue partners from outside the region. The Secretariat of the Pacific Island Countries Forum and nine other organizations have joined to form the Council of the Regional Organizations in the Pacific (CROP).

Recent FORUM work in the transport sector includes a Pacific Regional Transport Study in 2004 which identified major impediments to efficient transport in the Pacific region that are within the control of governments and made recommendations for the aviation and maritime sectors, including suggestions for new investments, more efficient use of current assets, and institutional issues. In response to the study, FORUM Leaders declared the **FORUM Principles on Regional Transport Services (FPRTS)** in 2004 which emphasized, inter alia, (a) principles of good governance; (b) commercial viability; (c) regulatory systems; (d) regional solutions; (e) internationally aviation and maritime security standards. In order to strengthen regional cooperation and integration, a Pacific Plan has been prepared by the FORUM secretariat for consideration in October 2005 which also defines the role of private sector mechanisms in the transport sector.

\(^{167}\) See the attachment to the report of the meeting.

\(^{168}\) Current members: Australia, Cook Islands, Federated States of Micronesia, Fiji, Kiribati, Nauru, New Zealand, Niue, Palau, Papua New Guinea, Republic of the Marshall Islands, Samoa, Solomon Islands, Tonga, Tuvalu and Vanuatu.
D. Regional Cooperation in Intermodal Transport Development

International production networks require a highly sophisticated level of supply chain and more specifically, logistics. As a result, the need for efficient, integrated, inter-modal international transport has become ever more apparent, and services providers have emerged that offer optimal combinations of transport modes (road, rail, IWT, sea, air) depending on customer preferences in terms of delivery time, reliability and cost.

1. Regional Initiatives

Governments in the region have been increasingly aware of the strategic competitive importance of the need to promote institutional changes and seamless physical interconnection between the various transport modes. While the private-sector driven development of maritime and civil aviation networks has developed into its characteristic hubs-and-spokes systems, thereby making maximum use of economies of scale, governments have tried to promote scale and interconnection through the promotion of inland container depots (ICDs) and even freight villages, the latter integrating many related services and intermodal connections in one place, in order to cut costs and promote traffic.

It should be noted, however, that these government efforts in Asia have been national initiatives, almost without exception. On the other hand, the hubs-and-spokes development in the maritime and air transport sectors has been driven by the private sector, essentially leading to companies owning or running regional and even global networks of their own. Clearly the strongest case for regional cooperation initiatives to promote intermodal transport is, therefore, in the land linkages to these networks.

The ALTID project of ESCAP is an early example of a regional programme that incorporates principles of inter-modal connectivity. In particular, since the Ministerial “Seoul Declaration on Infrastructure Development in Asia and the Pacific” in 2001, the concept has been firmly on the agenda and it has become an integral part of ALTID. In fact, one of the outcomes of the Declaration was the agreement by Ministers that they considered it essential that “Governments take a leading role in more effectively integrating the different forms of transport in order to develop sustainable inter-modal transport systems that deliver efficient domestic transport services and at the same time provide access to international markets and wider hinterlands”.

The two-pronged approach followed by the ESCAP Secretariat for promoting this process on a truly regional, continental scale, is:

- on the one hand, to promote subregional cooperation on integrating national intermodal transport systems (“bottom-up” approach, see next section), and
- on the other hand, to ensure interoperability, compatibility and consistency both in terms of standards and policy analysis methodology (“top-down approach”).

This document is the first in a series of planned contributions of the Secretariat for the latter “top-down” approach. It is expected to serve as a basis for high-level policy making and promote consistency of the many national and subregional initiatives.
2. Subregional initiatives

(a) ESCAP projects on subregional integrated transport networks

As a first step to support and promote the regional cooperation on development of an Asian integrated transport network, the ESCAP secretariat has started to carry out subregional studies on the issue that follow the ESCAP methodological approach mentioned above. The first such study focused on North-East Asia, the second one is in preparation and focuses on Central Asia.

ESCAP and the UNDP Tumen Secretariat jointly carry out a project on an integrated international transport and logistics system for North-East Asia. A policy-level expert group meeting in Ulaanbaatar in 2004 adopted an integrated international transport and logistics network for North-East Asia with a mix of major routes and corridors (appropriate roads, railways and water transport), including connections to major seaports\(^\text{169}\). These are based on the Trans-Asian Railway and Asian Highway. Intermodal interfaces such as inland container depots, freight terminals and distribution centres and border crossings were identified as important nodes along the routes. The meeting adopted actions required to develop the integrated network.

(b) ADB programmes on subregional cooperation

ESCAP has also been working closely with ADB, supporting its comprehensive subregional cooperation programmes in Asia and the Pacific, all of which include components related to integrated transport.

In fact, ADB has been supporting regional cooperation programs in the Asia and Pacific Region, namely, the Greater Mekong Subregion (GMS); the South Asia Subregional Economic Cooperation (SASEC)\(^\text{170}\); the Central Asia Regional Economic Cooperation (CAREC); the Brunei, Indonesia, Malaysia, Philippines-East ASEAN Growth Area (BIMP-EAGA); the Subregional Economic Cooperation in South and Central Asia (SECSCA); and the Pacific Plan for the small island states in the Pacific Ocean.

\(^{170}\) Based on the earlier South Asian Growth Quadrangle (SAGQ).
ANNEX II: MEMBERSHIP OF REGIONAL AND SUBREGIONAL ORGANISATIONS, AGREEMENTS AND PROGRAMMES

This annex lists (in the form of tables) selected regional programmes, intergovernmental agreements and organizations in Asia and the Pacific.
Organisations	Year founded	ESCAP	outside ESCAP	Total	Full name	Member countries and associate members
---------------------	--------------	------	---------------	-------	--	
ESCAP	1947	62	0	62	United Nations Economic and Social Commission for Asia and the Pacific	Afghanistan, Armenia, Australia, Azerbaijan, Bangladesh, Bhutan, Brunei Darussalam, Cambodia, China, Fiji, France, Georgia, India, Indonesia, Islamic Republic of Iran, Japan, Kazakhstan, Kiribati, Korea (Democratic People's Republic of), Korea (the Republic of), Kyrgyzstan, Lao People's Democratic Republic, Malaysia, Maldives, Marshall Islands, Micronesia (Federated States of), Mongolia, Myanmar, Nauru, Nepal, Netherlands, New Zealand, Pakistan, Palau, Papua New Guinea, Philippines, Russian Federation, Samoa, Singapore, Solomon Islands, Sri Lanka, Tajikistan, Thailand, Timor-Leste, Tonga, Turkey, Turkmenistan, Tuvalu, United Kingdom of Great Britain and Northern Ireland, United States of America, Uzbekistan, Vanuatu, Viet Nam, American Samoa, Cook Islands, French Polynesia, Guam, Hong Kong, China; Macao, China; New Caledonia, Niue, Northern Mariana Islands
APEC	1989	16	5	21	Asia Pacific Economic Cooperation	Australia, Brunei Darussalam; Canada; Chile; China; Hong Kong, China; Indonesia; Japan; Republic of Korea; Malaysia; Mexico; New Zealand; Papua New Guinea; Peru; Philippines; Russian Federation; Singapore; Taiwan, China; Thailand; United States of America; Viet Nam
BSEC	1992	5	6	11	Black Sea Economic Cooperation	Albania, Armenia, Azerbaijan, Bulgaria, Georgia, Greece, Moldova, Romania, Russia, Ukraine
CIS	1991	8	3	11	Commonwealth of Independent States	Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Republic of Moldova, Russian Federation, Tajikistan, Turkmenistan, Ukraine, Uzbekistan
ASEAN	1967	10	0	10	Association of Southeast Asian Nations	Brunei Darussalam, Cambodia, Indonesia, Lao People's Democratic Republic, Malaysia, Myanmar, Philippines, Singapore, Thailand, Viet Nam
ECO	1964	10	0	10	Economic Cooperation Organization	Afghanistan, Azerbaijan, Islamic Republic of Iran, Kazakhstan, Kyrgyzstan, Pakistan, Tajikistan, Turkey, Turkmenistan, Uzbekistan
BIMSTEC	1997	7	0	7	Bangladesh-India-Sri Lanka-Myanmar-Thailand Economic Cooperation	Bangladesh, Bhutan, India, Sri Lanka, Myanmar, Nepal, Thailand
SAARC	1985	7	0	7	South Asian Association for Regional Cooperation	Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka
SCO	2001	6	0	6	Shanghai Cooperation Organization	China, Kazakhstan, Kyrgyzstan, Russian Federation, Tajikistan, Uzbekistan
Pacific Island Forum	1971	16	0	16	Pacific Island Forum	Australia, Cook Islands, Federated States of Micronesia, Fiji, Kiribati, Republic of the Marshall Islands, Nauru, New Zealand, Niue, Palau, Papua New Guinea, Samoa, Solomon Islands, Tonga, Tuvalu, Vanuatu

Table 4: Overview of major intergovernmental organizations for regional and subregional cooperation in general.
<table>
<thead>
<tr>
<th>Organisations</th>
<th>Year founded</th>
<th>Members ESCAP</th>
<th>Members outside ESCAP</th>
<th>Total</th>
<th>Full name</th>
<th>Member countries and associate members</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT</td>
<td>1979</td>
<td>36</td>
<td>0</td>
<td>36</td>
<td>Asia Pacific Telecommunity</td>
<td>Afghanistan, Australia, Bangladesh, Bhutan, Brunei Darussalam, China, Fiji, India, Indonesia, Islamic Republic of Iran, Japan, Democratic People’s Republic of Korea, Republic of Korea, Lao People’s Democratic Republic, Malaysia, Maldives, Micronesia, Mongolia, Myanmar, Nauru, Nepal, New Zealand, Pakistan, Palau, Papua New Guinea, Philippines, Samoa, Singapore, Sri Lanka, Thailand, Tonga, Viet Nam. Associate Members: Cook Islands, Hong Kong, China; Macao, China; Niue.</td>
</tr>
<tr>
<td>IGC-TRACECA</td>
<td>1993</td>
<td>10</td>
<td>4</td>
<td>14</td>
<td>Intergovernmental Commission Transport Corridor Europe Caucasus Asia</td>
<td>Armenia, Azerbaijan, Bulgaria, Georgia, Kazakhstan, Kyrgyzstan, Republic of Moldova, Mongolia, Romania, Tajikistan, Turkmenistan, Turkey, Ukraine, Uzbekistan (Afghanistan in the process of joining)</td>
</tr>
<tr>
<td>INSTC</td>
<td>2000</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>International North-South Transport Corridor</td>
<td>Belarus, India, Islamic Republic of Iran, Kazakhstan, Oman, Russian Federation, Tajikistan</td>
</tr>
<tr>
<td>Asian Highway (AH)</td>
<td>2004</td>
<td>26</td>
<td>0</td>
<td>26</td>
<td>Intergovernmental Agreement on the Asian Highway (initiated by ESCAP)</td>
<td>Signatories (as of May 2004): Afghanistan, Armenia, Azerbaijan, Bhutan, Cambodia, China, Georgia, India, Indonesia, Islamic Republic of Iran, Japan, Kazakhstan, Kyrgyzstan, Lao People's Democratic Republic, Mongolia, Myanmar, Nepal, Pakistan, Republic of Korea, Russian Federation, Sri Lanka, Tajikistan, Thailand, Turkey, Uzbekistan, Viet Nam.</td>
</tr>
<tr>
<td>ICC-RESAP</td>
<td>1995</td>
<td>26</td>
<td>0</td>
<td>26</td>
<td>Intergovernmental Consultative Committee (ICC) on the Regional Space Applications Programme for Sustainable Development in Asia and the Pacific (RESAP)</td>
<td>Australia, Azerbaijan, Bangladesh, Bhutan, Cambodia, China, Fiji, Hong Kong, China, India, Islamic Republic of Iran, Japan, Lao People’s Democratic Republic, Malaysia, Mongolia, Myanmar, Nepal, Pakistan, the Philippines, Republic of Korea, Russian Federation, Singapore, Sri Lanka, Thailand, Vanuatu, Viet Nam.</td>
</tr>
</tbody>
</table>

Table 5: Overview of major intergovernmental organizations for regional and subregional cooperation in a specific sector (transport or ICT).
<table>
<thead>
<tr>
<th>Programme</th>
<th>Year founded</th>
<th>Members</th>
<th>Participating countries, provinces and economies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ESCAP</td>
<td>outside ESCAP</td>
</tr>
<tr>
<td>CIS-7</td>
<td>2002</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>CAREC</td>
<td>1997</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>GMS</td>
<td>1992</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>CSATTF</td>
<td>2003</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Tumen River</td>
<td>1991</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>SASEC</td>
<td>2001</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>SPECA</td>
<td>1998</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MGC</td>
<td>2000</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6: Overview of selected regional or subregional programmes on cooperation of a general nature.
<table>
<thead>
<tr>
<th>Programme</th>
<th>Year founded</th>
<th>Members</th>
<th>Total</th>
<th>Participating countries, provinces and economies</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRADP</td>
<td>1999</td>
<td>4</td>
<td>4</td>
<td>China, Kazakhstan, Kyrgyzstan, Tajikistan. Uzbekistan and Turkmenistan have been invited to join.</td>
</tr>
<tr>
<td>Trans-Asian Railway Project (TAR)</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>Armenia, Azerbaijan, Bangladesh, Cambodia, China, Democratic People's Republic of Korea, Georgia, India, Islamic Republic of Iran, Kazakhstan, Kyrgyzstan, Malaysia, Mongolia, Myanmar, Pakistan, Republic of Korea, Russian Federation, Sri Lanka, Singapore, Tajikistan, Thailand, Turkey, Turkmenistan, Uzbekistan, Viet Nam</td>
</tr>
<tr>
<td>AP* (APNG)</td>
<td>1993</td>
<td>19</td>
<td>21</td>
<td>Current participating economies: Australia; Brunei; Cambodia; Canada; China; Fiji; Hawaii; Hong Kong, China; India; Indonesia; Republic of Korea; Japan; Macau, China; Malaysia; New Zealand; Pakistan; the Philippines; Singapore; Sri Lanka; Taiwan, China; Thailand; the United States of America; Vietnam.</td>
</tr>
<tr>
<td>AI3</td>
<td>1995</td>
<td>9</td>
<td>9</td>
<td>Japan, Indonesia, Hong Kong Province of China, Singapore, Thailand, Viet Nam, Malaysia, Sri Lanka, Philippines</td>
</tr>
<tr>
<td>TER</td>
<td>1990</td>
<td>3</td>
<td>19</td>
<td>Austria, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Georgia, Greece, Hungary, Italy, Lithuania, Poland, Romania, Russian Federation, Slovak Republic, Slovenia and Turkey. In addition a number of 6 observer countries participate in certain activities of the project: Belarus, FYROM, FR Yugoslavia, Latvia, Moldova and Ukraine.</td>
</tr>
<tr>
<td>TEM</td>
<td>1977</td>
<td>2</td>
<td>15</td>
<td>Bosnia and Herzegovina; Bulgaria; Croatia, Czech Republic; Georgia; Greece; Hungary; Italy; Lithuania; Poland; Romania; Slovakia; Turkey (Associate member country: Austria; Observer Countries: Serbia and Montenegro; Sweden; Ukraine)</td>
</tr>
<tr>
<td>TEIN</td>
<td>2001</td>
<td></td>
<td></td>
<td>ASEM members: Thailand, Malaysia, Philippines, Indonesia, Brunei, Singapore, Vietnam, China, Japan, the Republic of Korea, Italy, Germany, France, the Netherlands, Belgium, Luxembourg, Denmark, Ireland, Greece, Spain, Portugal, Austria, Finland, Sweden, the United Kingdom, the European Commission. Enlargement expected for 2004.</td>
</tr>
</tbody>
</table>

Table 7: Overview of selected regional or subregional programmes on either transport or ICT in Asia and the Pacific.