Summary of Comments on Draft Recommended crash-related minimum data set and data sources

<table>
<thead>
<tr>
<th>Organization/Country</th>
<th>Reviewer</th>
<th>Comments</th>
<th>Actions taken/Response</th>
<th>Suggestions</th>
</tr>
</thead>
</table>
| Bangladesh | Nur Mohammad Mazumder | **Specific Comments**
1) As crash related indicator No. 9 and 39 are almost similar, Therefore Indicator no. 39 could be combined together.
2) Under Crash related Indicator No. 13, additional data values like “Undulation, Rutting, and Potholes etc” Could be added.
3) Under Indicator No. 18, Tight and Open curve could be replaced by Sharp and Ease respectively.
4) Under road related Indicators the following three indicators could be added after indicator no. 19 of road related indicator category.
 i) Vulnerable Road user (VRV) facilities
 -Data values could be classified as:
 a) At grade pedestrian crossing facility
 b) Foot over bridge
 c) Pedestrian underpass
 d) Not or poorly defined
 ii) Road side Built Environment
 -Data values could be classified as:
 a) Ribbon development.
 b) Sensitive Institutions (School, Hospital, Religious place etc.)
 c) Industry (Labour intense)
 iii) Community Response
 -Data values could be classified as: | Added as suggested |
1. We strongly suggest that there is an integration of a section on behavioural outcome indicators. Given the challenges with quality of crash data and investigation in many countries and the significant work needed to improve these systems, behavioural outcome indicators are an ideal proxy for casualty rates for country level data. The inclusion of these, and necessary resources allocated to collect them, would start to provide quality data that can be used to judge the situation in various jurisdictions and provide important guidance to the implementation of interventions. These would include:

- Free travel speed surveys (urban, rural and motorway)
- High alcohol hour roadside drink drive surveys
- Seat belt wearing surveys (front and back seat)
- Child restraint use surveys
- Motorcycle helmet wearing surveys

2. We also recommend to incorporate a broader suggestion for countries to be part of the international road safety public perceptions survey (ESRA – E-Survey of Road User’s Attitudes), which is tailored to local language and context and is a cross-national initiative to monitor road users’ attitudes and performance (www.esranet.eu). Participation in the survey would allow before and after measures of progress and allow each country to compare itself internationally.
Specific Comments
The objective of this task force is to identify:
I. a minimum set of safety and crash related variables that all countries should collect at national level;
II. a common set of variables that will be collected at the observatory level, with the objective to create a common safety database (monitoring tool).

Section A – Country Profile
Section B – Crash Related Variables
Section C – Other Indicators
Suggestion:
I. To collect data only on fatal crashes
II. Definition - To follow best practice of die within 30-day of crash

<table>
<thead>
<tr>
<th>Philippines</th>
<th>Atty. Oliver Sy Tanseco</th>
<th>Specific Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1. Crash related indicator 1: Inclusion of a dedicated alpha-numeric code for every country for easy analysis and identification (i.e. “RP” for road crash in the Philippines)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Crash related indicator 5: (Include additional Data Values: 8 Crash with other non-motorized transport (NMT): Crash involving a motor vehicle and a non-motorized transport/vehicle. (i.e. bicycles, rickshaw, hand carts) 9 Crash involving mass public transport vehicle: Crash involving mass public transport (i.e. bus, coaches, trolley bus, mini bus, jeepney) 10 Other crashes: Other crash type not described above</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Crash related indicator 6: Include 12 Overhead impact: Crash involving a vehicle overshooting an elevated roadway such as a bridge, skyway, ridge etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Crash related indicator 9: Include</td>
</tr>
</tbody>
</table>

Noted

Except point 17 added as suggested as this is country specific
Serious/severe injury: Include in the categorization of injuries crash that results to a temporary or permanent loss in the use of a limb and or loss/amputation of a limb; loss of an eyesight or loss of mobility/paralyzed. Include the number of days that the injured person was incapacitated from working or earning a living to include the economic cost of injuries caused by road crash.

5. Crash related indicator 10: Distinction should be made on the type of vehicles allowed on said roadway or expressway. In the Philippines only motorcycle with an engine displacement of 400cc and above are allowed.

6. Crash related indicator 12: Include
 3. Semi-paved: Roads which is partially paved and unpaved either in both opposing lanes or in one lane.

7. Crash related indicator 13: Include:
 6 Littered with Debris: roads littered with debris such as garbage, trash, rocks or being used to dry unhusked rice, seeds and other grains products.

8. Crash related indicator 14: Include also road ways with no set speed limit.

9. Crash related indicator 15: Include
 Type/Kinds of obstruction. This is to identify the common type of obstruction on roadways

10. Crash related indicator 20: The use the authorized Plate Number assigned to motor vehicles is recommended

11. Crash related indicator 21: The VIN is often not included in the road crash report including that of the official police report. The plate number is already accepted as the ample identification of the motor vehicle involved in the road crash.
12. Crash related indicator 24: The Philippine motor vehicle classification distinguishes heavy goods vehicle or trucks into the vehicle’s gross weight:
 - **Trucks**: above 4500 kg
 - **Articulated Vehicle**: articulated vehicles

13. Crash related indicator 27: In case of second-hand motor vehicles imported into a country and registered as a new vehicle, the original year model of the date of manufacture of the engine appearing in the vehicle registration should be reported.

14. Crash related indicator 29: Instead of “taxi”, vehicle type should consider Public Utility Vehicle (PUV) excluding buses such as Taxi, Jeepney and the like.

15. Crash related indicator 36: The more politically accepted term “gender” should be considered.

16. Crash related indicator 40: Include also if the chin strap was used or not:
 - **3 Helmet Chin Strap used**
 - **4 Helmet Chin Strap not used**

17. Crash related indicator 46: Consider the Restriction Code used in the Philippines such as:
 - **Restriction 1**: Allowed to use Motorcycle
 - **Restriction 2**: Allowed to use motor vehicle up to 4500 kg Gross Vehicle Weight (GVW)
 - **Restriction 3**: Allowed to use motor vehicle above 4500 kg Gross Vehicle Weight (GVW)
 - **Restriction 4**: Automatic Transmission up to 4500 kg GVW
 - **Restriction 5**: Delivery vehicle with Automatic Transmission up to 4500kg GVW
 - **Restriction 6**: Articulated Vehicle 1600 kg and below
<table>
<thead>
<tr>
<th>iRAP</th>
<th>Rob McInerney</th>
</tr>
</thead>
</table>

Restriction 7: Articulated Vehicle above 1600 kg up to 4500 kg GVW

Restriction 8: Articulated Vehicle with a GVW of 4500

18. Consider also the inclusion of a reporting system for victims of road crash involving **Person with Disability (PWD)**

General Comments:

One opportunity to consider as you specify the primary road features to record is to use the road features and definitions in the iRAP coding manuals that are published and used in the region / globally. The simplest form would be to include the following road features that inform the base metrics we report globally (see image below and https://www.vaccinesforroads.org/irap-big-data-tool-map/). That is:

- Footpath or sidewalk; pedestrian crossing presence; quality of signage; bicycle lane; motorcycle lane; undivided / divided; roadside hazards; intersection type – most of which you have covered so would just need to align sub-codes and definitions.
- The next more advanced step could be the coding and reporting of a spot star rating at the location of a crash (using a light model or full model). This could be integrated into a coding app building on the Star Rating for Schools approach / Star Rating Demonstrator in use around the world.

Specific Comments:

1. Crash related indicator 5: Crash with a bicycle; Crash with a motorcycle (may need to have a new indicator for “Road Users Involved” should be considered

2. Crash related indicator 10: The reference to low speeds here may create confusion when considering higher speed arterial road (e.g. 60 - 80km/h). With functional class covered in next item the reference to speed could be removed here?.

3. Crash related indicator 16: At-grade, merge lane: (e.g. motorway entry or exit ramp)
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIA</td>
<td>Maria Segui Gome</td>
<td>General Comments: 1. the document Jamie circulated is the result of several rounds of consultations with African Representatives and their agreed upon crash-related variables for national level data gathering. What you can see in the document too is that we opened the "Pandora box" of the data source of each variables since even though historically most of them are produced by police officers completing an accident report, truth is that many of the data elements could be derived from crossing data with other existing databases (e.g., driver registration files, vehicle registration files, etc). 2. a separate issue is whether the Regional Observatory collects all these variables for all the member countries and whether they collect it individually or in an aggregated manner. Here, there are two models that can be used as example, MiniCADAS which is an simpler version of the EU-wide CADAS list of crash-related variables or the variables chosen by IRTAD. In the case of IRTAD, countries only submit aggregated data (i.e., counts).</td>
<td>To be discussed</td>
</tr>
</tbody>
</table>
The basic questions to decide on crash-related data are:

a) which data elements should be registered for each crash happening in a country (possible examples CADAS, ARSO, your own)
b) which data elements should be shared with other countries in the regional observatory (possible examples CADAS, MINICADAS, IRTAD, your own)
c) what level of disaggregation should the Regional observatory demand (i.e., individual crash level data (possibly anonymized, aggregated))

Once crash-related information is cleared, maybe we can move to the other road safety needed indicators (exposure, performance indicators, etc).