Module 2: Review of Basics of Sampling Methods
Session 2.3: Systematic Sampling

By
Chris Ryan
Statistician (ESCAP Pacific Office)
Topics Covered

* Different Types of Systematic Sampling
 * Linear systematic sampling
 * With $N/n = \text{Integer}$
 * Without $N/n = \text{integer}$
 * Circular systematic sampling
Systematic Sampling (SYS), like SRS, involves selecting n sampling units from a population of N units.

Instead of randomly choosing the n units in the sample, a skip pattern is run through a list (frame) of the N units to select the sample.

The skip or sampling interval, $k = N/n$.
Linear systematic sampling: Selection process

1) Form a **sequential list** of population units

2) Decide on a sample size n and compute the skip ($sampling\ interval$),$ k = N/n$

3) Choose a random number, $r\ (random\ start)$ between 1 and k (inclusive)

4) Add “k” to selected random number to select the second unit and continue to add “k” repeatedly to previously selected unit number to select the remainder of the sample
Linear systematic sampling: Selection process

Sample Interval (k = N/n)

1 2 r k n₂ n₃ etc N

Sample Intervals

r = Random Start between 1 and k = n₁
Previous example assumed that $k = \frac{N}{n}$ is an integer

Question: What if $k = \frac{N}{n}$ is NOT an integer?

Solution 1: Work with decimal places and round

Solution 2: Circular sampling
Example – working with decimals and rounding

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>32</td>
</tr>
<tr>
<td>n</td>
<td>7</td>
</tr>
<tr>
<td>skip</td>
<td>4.571429</td>
</tr>
<tr>
<td>R.Start</td>
<td>2.636695</td>
</tr>
</tbody>
</table>

- \(\frac{32}{7} \)
- \(\text{RAND() \times 4.571429} \)
- Same as the random start
- \(\text{roundup}(2.636695, 0) \)
1) Determine the interval k – rounding down to the integer nearest to N/n
 (If $N = 15$ and $n = 4$, then k is taken as 3 and not 4)

2) Take a random start between 1 and N

3) Skip through the circle by k units each time to select the next unit until n units are selected

4) Thus there could be N possible distinct samples instead of k
Circular sampling illustration

Population = 24, Sample = 5, Skip = Int(24/5=4.6) = 4

Random start

1 2 3 4 5 6 7 8

24

23

22

21

Random start

17

20 19 18 17 16 15 14 13
Estimation with Systematic Sampling

The weight for a systematic sample is the same as Simple Random Sampling

Estimate of a total

\[\hat{Y} = N \times \sum_{i=1}^{n} \frac{y_i}{n} = \sum_{i=1}^{n} \frac{N}{n} y_i = \sum_{i=1}^{n} w y_i \]

Estimate of a mean

\[\hat{\bar{Y}} = \sum_{i=1}^{n} \frac{y_i}{n} \]
Estimation with Systematic Sampling (cont)

Estimate of a proportion

\[y_i = \begin{cases} 1 & \text{ith sample unit has characteristic} \\ 0 & \text{otherwise} \end{cases} \]

\[\hat{Y} = \frac{N}{n} \sum_{i=1}^{n} y_i = \hat{N}_c \]

\[\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \hat{P}_c \]