Macroeconomic Forecasting and Policy Analysis

Mr. Giorgi Barbakadze, Head of Macroeconomics and Statistics Department
Mr. Zviad Zedginidze, Head of Macroeconomic Research Division

National Bank of Georgia

Bangkok
December 8, 2015
Outline

• Overview
• Background of the analytical work at the NBG
• Forecasting and Policy analysis System
• Application of the forecast
• Future avenue
• Potential role of the international effort
Overview

• Main objective of NBG – maintain price stability
 – Constitution
 – Organic law of Georgia

• Georgia has moved to Inflation Targeting since 2009

• Under Inflation Targeting monetary policy is designed based on the inflation forecasts so that the inflation target is met in the medium term

• The main instrument of monetary policy is policy interest rate

• The interest rate decision at each MPC meeting is based on forward-looking analysis

• Endogenous short-term interest rate path in the forecast is essential for efficient implementation of inflation targeting
Overview Cont.

- Weak but improving monetary policy transmission mechanism
- Stable financial system
- Developing financial markets
- Organizational structure
 - MPC
 - Liquidity forecasting group
- Communication policy improving
Overview Cont.

- The inflation target is set by the National Bank of Georgia
 - It is written in “The Main Directions of Monetary and Exchange Rate Policies”
 - The parliament of Georgia approves the target annually for the next 3 years.
 - If Parliament does not approve the target. NBG will still follow its policy

- **NBG gradually reduces inflation target toward its long term value of 3 percent.** For 2016 inflation target is set at 5 percent level, for 2017 - at 4 percent. From 2018 inflation target is set at 3 percent.
Overview Cont.

- **Monetary policy is designed based on the inflation forecasts so that the inflation target is met in the medium term**

- Monetary policy formulation and the implementation measures are discussed by the Monetary Policy Committee

- The committee consists of 12 members: the Governor, two Vice Governors, and the heads of relevant departments and divisions

- MPC meets 8 times in a year

- New forecast is produced once a quarter before every second MPC meeting when Inflation Report is released

- **The monetary policy committee (makes decision on monetary policy instruments);**
 - The most important is the monetary policy rate (determined by monetary policy reaction function)
 \[i_t = \gamma_1 i_{t-1} + (1 - \gamma_1) [i^N_t + \gamma_2 (\pi_{t+3} - \pi_{tar}^t) + \gamma_3 \hat{Y}_t] \]
 - Operational target is stabilization of interbank short-term rates around monetary policy rate

- Financial markets division (enforces decisions)
Forecasting and policy analysis system (FPAS)

• The interest rate decision at each MPC meeting is based on forward-looking analysis

• Endogenous short-term interest rate path in the forecast is essential for efficient implementation of inflation targeting

• In this regard, macroeconomic models represent an effective tool for forecasting, taking into account the endogeneity of monetary policy

• The NBG relies on forecasting and policy analysis system that has been developed by its staff in cooperating with international counterparties
FPAS functions in general

• **A model-based, macroeconomic forecast** – to provide information for policy decisions and support it by structuring and systemizing the analysis

• **Risk assessments** – this includes risk assessments to the baseline forecast, alternative scenarios for specific assumed shocks, and options for the policy rule

• **Measures of uncertainty** - The model-based forecast should be presented with model-consistent confidence intervals for key variables (bands or fan charts)
Forecasting and policy analysis system (FPAS)

• Incorporates several analytical tools classified in three categories
• Short term forecasts (one-two quarters) of main macroeconomic variables are based on the output of these models
 – Nowcasting
 • Judgement is used mostly - GDP current quarter forecast, inflation forecast
 – Near term forecasting
 • ECM - quarterly inflation equation
 • Principal Components - quarterly GDP forecast
 • BVAR - quarterly GDP and inflation forecast model
• Medium term forecasting tool (core model)
 – Semi structural model based on the new Keynesian approach. Its balanced by empirical qualities and dynamic stochastic general equilibrium approach (DSGE)
• Additional satellite models
• Fiscal impulse is incorporated exogenously
Components of FPAS

• Full-time team of staff
• Streamlined set-up
• Core macro model
• A reporting database
• A near-term (current and next quarter) forecasting system
• Information sharing
Forecasting staff

<table>
<thead>
<tr>
<th></th>
<th>Research Division</th>
<th>Monetary Policy Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near term forecasting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP current quarter forecast</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Inflation forecast by components</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Short term Forecasting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECM - quarterly inflation equation</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Principal Components - quarterly GDP forecast</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BVAR - quarterly GDP and inflation forecast mode</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Inflation forecast by components</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Medium term forecasting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Model</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Additional inputs to the forecast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection of fiscal impulse</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BoP forecast</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Organization of forecasting process

<table>
<thead>
<tr>
<th>Forecast preparation stages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical preparation of the model for forecast</td>
<td>First week</td>
</tr>
<tr>
<td>Setting initial conditions</td>
<td>Second week</td>
</tr>
<tr>
<td>Forecast review and reconciliation</td>
<td>Third week</td>
</tr>
<tr>
<td>Drafting Inflation report</td>
<td>Fourth week</td>
</tr>
<tr>
<td>Pre-MPC Meeting</td>
<td>Fifth week</td>
</tr>
<tr>
<td>MPC Meeting</td>
<td>Fifth week</td>
</tr>
<tr>
<td>Presentation of inflation report to analysts</td>
<td>Sixth week</td>
</tr>
<tr>
<td>Publishing Inflation Report</td>
<td>Sixth week</td>
</tr>
</tbody>
</table>
Core macro model

- **The NBG uses a “gap” model for monetary policy analysis and forecasting** - It is a semi-structural open-economy model with an endogenous central bank reaction function.

- The model is calibrated to reflect characteristics of the Georgian economy and to have standard macroeconomic properties.

- **Key behavioral equations**
 - Aggregate demand or IS curve
 - Price Setting or Phillips curve
 - Uncovered Interest rate parity condition for the exchange rate
 - Monetary policy rule for setting interest rate

- Two part - ROW and Georgia
- The model allows projections for GDP, inflation, interest rates and exchange rates.
The QPM Phillips curve splits inflation into domestic and imported components. Headline inflation is composed of domestic, π_t^D, and imported, π_t^M, prices:

$$\pi_t = (1 - \beta_1)\pi_t^D + \beta_1 \pi_t^M$$

Domestic inflation captures the cyclical impact of the output gap, and direct and indirect exchange-rate pass through import prices and real exchange rate gap:

$$\pi_t^D = \beta_2 \pi_t^M + (1 - \beta_2)[\beta_3 \pi_{t-1}^D + (1 - \beta_3)\pi_t^e] + \beta \left(\beta_4 \tilde{D}_t + \beta_5 \hat{Z}_t\right) + \varepsilon_{t}^D,$$

Where \tilde{D}_t is the output gap, \hat{Z}_t is the deviation of the real exchange rate from its equilibrium trend, and π_t^e is expected domestic inflation. Imported inflation is approximated by the product of changes in the exchange rate times the foreign inflation rate, i.e.

$$\pi_t^M = \beta_6 \pi_{t-1}^M + (1 - \beta_6)[\Delta S_t + \pi_t^* - \Delta \tilde{Z}_t] + \varepsilon_{t}^M,$$

Where ΔS_t is the change in the nominal effective exchange rate, $\Delta \tilde{Z}_t$ is the trend in the real exchange rate, and π_t^* is foreign inflation. Both the exchange rate and the foreign inflation rate are measured as trade-weighted averages of 5 trading partners (the United States, the euro area, Turkey, Ukraine, and Russia).
Core macro model cont.

- **Aggregate demand** is modeled with separate equations for domestic demand and **net exports**. The gap between equilibrium and actual GDP is decomposed into the domestic-demand gap and net-trade gap, i.e.:

\[
\hat{Y}_t = \eta_1 \hat{D}_t + \eta_2 \hat{X}_t.
\]

Domestic demand is affected by the real interest rate gap and the risk premium, and by the effect of net trade and real exchange rate (balance-sheet effect) on consumption, i.e.

\[
\hat{D}_t = \alpha_1 \hat{D}_{t-1} + \alpha_2 \hat{D}_t^e - \alpha_3 (r_t^{eff} + \alpha_4 prem_t) + \alpha_5 (\hat{Y}_t - \hat{D}_t - \alpha_6 \hat{Z}_t) + \alpha_7 \hat{G}_t + \epsilon_t^D
\]

- **Net exports are a function of the exchange rate and foreign demand.**

The net export gap, \(\hat{X}_t \), responds to the foreign demand gap, \(\hat{Y}_t^* \), the real exchange rate, \(\hat{Z}_t \), and domestic demand, \(\hat{D}_t \):

\[
\hat{X}_t = \xi_1 \hat{X}_{t-1} - \xi_2 \hat{D}_t + \xi_3 \hat{Z}_t - \xi_4 \hat{Y}_t^* + \epsilon_t^Z.
\]
Core macro model cont.

• **Exchange rate determination**
 Exchange rate determination follows a modified version of the uncovered interest parity (UIP) condition, i.e.
 \[i_t = i^*_t + 4(S^GEL_{USD,e} - S^GEL_{USD}) + prem_t + \varepsilon^S_t, \]

• **A central bank policy reaction function sets the short-term interest rate.**
 The function is forward-looking in that it responds to the model’s own forecast for year-on-year headline inflation, \(\pi 4_{t+4} \). Policy also responds to the output gap, \(\hat{Y}_t \). Reflecting the actual behavior of central banks, the reaction function smooths the interest rate response:
 \[i_t = \gamma_1 i_{t-1} + (1 - \gamma_1)(i_N^t + \gamma_2(\pi 4_{t+4} - \pi_{tar}) + \gamma_3 \hat{Y}_t) + \varepsilon^i_t \]
Inflation forecast

Source: NBG
Development of the model

• Technical assistance mission from IMF in 2009
 – Human capacity development
 – Training of the staff

• NBG Staff visit to IMF for training in 2011

• Cooperation with the international consulting company OG Research to develop the model in 2012-2013 financed by EBRD
 – On-site visits
 – Training of the staff

• On going technical assistance from IMF aiming at improving the QPM and streamlining the FPAS
Data challenges

• Short time series and structural breaks
 – macroeconomic data useful for modeling purposes begin in 2004
• Real GDP by expenditures does not exist (although NBG does rough estimation of it)
• Labor statistics suffer from methodological inaccuracies over the history
• Absence of Inflation expectations and consensus forecasts
SDG

- Sustain GDP per capita growth
- Inclusive growth
- Productivity growth
- Diversification
- Renewable Energy

- Macroeconomic stability
- Low and predictable inflation
- Stable and developed financial sector
- Improved access to finance
Questions ?
Monetary policy efficiency

Source: NBG

* Interest rate volatility is measured as 3 day standard deviation
Money market rates hover around the policy rate...

Activation of Monetary Policy Instruments

Source: NBG
Need for NBG interventions have decreased

Introduction of FX Auctions

Source: NBG