Trade and Environment Dimensions in the Food and Food Processing Industries in Asia and the Pacific

A Country Case Study of

Sri Lanka

By
Asha Gunawardena
Institute of Policy Studies of Sri Lanka

This paper was conceived as an input to the regional study, not as a full-fledged paper. Editing was provided by Sabrina Shaw. The views expressed in this paper are solely those of the author and do not necessarily represent the views of the United Nations or any of its Member States.
Table of Contents

Section A:
Environmental Considerations in Trade in Food and Food Processing Products in Sri Lanka

Section B:
National Experience in Improving Export Competitiveness and Environmental Sustainability

Section C:
Recommendations

References

Meetings
Case Study on Trade and Environmental Dimensions of the Food and Food Processing Industries in Sri Lanka

Section A: Environmental Considerations in Trade in Food and Food Processing Products in Sri Lanka

Three important food processing industries in Sri Lanka have been selected for this study
a. Tea;
b. Desiccated Coconut; and
c. Prawns.

1.1. Contribution of selected industries to exports and GDP

<table>
<thead>
<tr>
<th></th>
<th>Export earnings (Rs. Million)</th>
<th>As a percentage of exports</th>
<th>As a percentage of GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tea</td>
<td>6593</td>
<td>7489</td>
<td>8148</td>
</tr>
<tr>
<td>Desiccated Coconut</td>
<td>3275</td>
<td>4698</td>
<td></td>
</tr>
<tr>
<td>Prawns</td>
<td>4165</td>
<td>2390</td>
<td>1775</td>
</tr>
</tbody>
</table>

Sources: Export Agriculture Division, Export Development Board; Central Bank Annual Report – various issues.

1.2. Contribution to Employment

<table>
<thead>
<tr>
<th>Industry</th>
<th>Number of people employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tea</td>
<td>650,000 (in 2003)</td>
</tr>
<tr>
<td>Desiccated Coconut</td>
<td>10,000 (in 2002)</td>
</tr>
<tr>
<td>Prawns</td>
<td>8,000 (in 2000)</td>
</tr>
</tbody>
</table>

1.3. Structure of the Industry

<table>
<thead>
<tr>
<th>Growers</th>
<th>Exporters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tea</td>
<td>60%</td>
</tr>
<tr>
<td>Private sector</td>
<td>37%</td>
</tr>
<tr>
<td>Corporate management sector</td>
<td>4%</td>
</tr>
<tr>
<td>* According to the land extent under cultivation</td>
<td></td>
</tr>
<tr>
<td>Desiccated Coconut</td>
<td>Large scale exporters – 60%</td>
</tr>
<tr>
<td>Private sector/small holding – majority</td>
<td>SME exporters – 40%</td>
</tr>
<tr>
<td>State sector – a few large holdings</td>
<td></td>
</tr>
<tr>
<td>Prawns</td>
<td>Large scale exporters - 90%</td>
</tr>
<tr>
<td>Majority comes under SMEs</td>
<td>SMEs - 10%</td>
</tr>
</tbody>
</table>

Sources: Statistical Bulletin 2003, Sri Lanka Tea Board; Export Development Board.

1.4 Major markets

<table>
<thead>
<tr>
<th></th>
<th>Total export value in US$ million</th>
<th>Major export destinations</th>
<th>Market share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tea</td>
<td>811.39 in 2005</td>
<td>Middle East</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Russia</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Europe</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
<td>35 (in 2003)</td>
</tr>
<tr>
<td>Desiccated Coconut</td>
<td>46.5 in 2004</td>
<td>India</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egypt</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAE</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saudi Arabia</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>France</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Germany</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spain</td>
<td>3 (in 2004)</td>
</tr>
<tr>
<td>Prawns</td>
<td>24.7 in 2004</td>
<td>Japan</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EU</td>
<td>6 (in 2004)</td>
</tr>
</tbody>
</table>

2.0 Entry barriers to export markets based on environmental and health considerations

- **The main international trade rules under the World Trade Organisation (WTO) related to health and environment are the Agreement on Technical Barrier to Trade (TBT), which aims to ensure technical regulations and the Agreement on Sanitary and Phytosanitary (SPS) measures to ensure that human and animal food is safe from contaminants, toxins, disease causing organisms and additives.**

- **The HACCP (Hazard Analysis Critical Control Point) system is a preventative food safety management system, recognized by the Codex Alimentarius Commission, which is the internationally recognised standard for world food trade under the WTO. The key elements of this system are:**
 1. Critical examination of raw materials, processes and products;
 2. Hygienic conditions from origin until it reaches the customer;
 3. Identifying stage where hazards could occur;
 4. Maintaining controls at identified stages;
 5. Documenting HACCP process and keeping records; and
 6. Ensuring the system continues to work effectively (APO 2004).

Tea

- The main markets for Sri Lankan tea are Russia and the Middle East. The minimum standard for Sri Lankan exports of black tea is ISO 3720. The tea tasting unit at the Sri Lanka Tea Board tests the samples of tea and only certifies or allows export if the tea samples confirm with this standard. In addition, Sri Lankan exporters of pure instant tea comply with ISO 6079.

- Eight percent of the total Sri Lankan tea exports are destined for Europe. EU Regulation 852/2004 on the hygiene of foodstuffs and the application of HACCP will be implemented in the tea processing and packaging industry. While it is currently not a mandatory requirement, certain buyers are obtaining HACCP certification to increase their commercial advantage in Europe. It is likely that HACCP will become a mandatory requirement in the near future.

Several private consultancy companies have taken initiatives to provide information to tea factories and exporters in Sri Lanka to follow HACCP standards and obtain HACCP certification (Financial Times, 2006). The Sri Lanka Standards Institution (SLSI) and accredited foreign agencies issue these certificates. However, only a few exporters (7) and tea factories (4) have put in place HACCP standards. The Government is planning to increase funding to improve the conditions of tea factories and export warehouses.
Desiccated coconut

- Every desiccated coconut mill maintains a laboratory to test quality under the supervision of the Coconut Development Authority (CDA). In addition, the CDA regularly supervises the warehouse standards of exporters. The CDA coordinates with the Sri Lanka Standards Institution to certify quality for desiccated coconut exports.

- Three large desiccated coconut exporters are currently following HACCP procedures in order to export to the EU. The CDA has taken an initiative to promote desiccated coconut millers to follow HACCP procedures by providing grants and loans. The Sri Lanka Standards Institution, with the help of CDA, is conducting training for coconut millers.

Prawns

- Sri Lanka has already introduced HACCP certification in the prawn industry, which requires significant investment. Exporters should obtain a license from the Ministry of Fisheries. The national regulations on exporting fish products are the Fish Product (Export) Regulations of 1998 and the Aquaculture (Monitoring of Residues) Regulations of 2000. Inspection and certification of compliance with these regulations is required for each export consignment. HACCP is a mandatory requirement to export to the EU, but not for Japan and the US.

- An emphasis has been placed on monitoring to ensure there are no residues of antibiotics as per EU guidelines and requirements. The Sri Lankan Department of Aquatic Resources issues the residue-free certificates.

Observations

In general, the tea, desiccated coconut and prawn sectors have not experienced bans or restrictions due to non-compliance with health and environmental standards since Sri Lanka has been able to set domestic regulations and standards in line with the market access requirements in export markets. Despite these initiatives, Sri Lanka is not yet prepared to follow some of the new standards which are mandatory in key export markets, such as HACCP in the EU. A lack of harmonization in maximum residue levels (MRLs) in tea, for example, can act as a trade barrier and impose significant compliance costs on tea exporters.

Specific Constraints

Tea

Small and medium-size exporters (SMEs) and processors are facing several problems in implementing HACCP procedures, such as lack of up-to-date information, high
investment costs to secure certification and lack of technical capacity. The government-operated Tea Board is also experiencing difficulties in providing incentives to SME tea factories and warehouses due the lack of financing to meet the high costs of certification.

Desiccated coconut

The incentives for desiccated coconut millers to follow HACCP procedures are lacking for several reasons. While HACCP certification is mandatory for export to the EU, the EU is not the main market for Sri Lankan desiccated coconut. Given that desiccated coconut mills only operate at full capacity during certain periods of the year, the high cost of compliance with HACCP procedures is even more burdensome. Millers also face lack of capacity in to prepare the necessary documentation to support requests to be certified and the technical skills to follow the appropriate procedures.

Prawns

Sri Lankan prawn exporters have had their exports rejected due to high residue levels of veterinary antibiotics. However, there have not been any bans reported on Sri Lankan prawn exports. This is due in large measure to the fact that Sri Lanka regulates exports of fish and fish products and its exporters comply with HACCP procedures, which is demanded by the EU for prawns. However, according to the Sri Lankan Standards Institution, the HACCP certification process is costly for prawn processors to test for antibiotics. There is no procedure to register prawn farmers and monitor their activities during the production period, for example to ensure the quality of larvae and monitor the use of antibiotics. Therefore, fresh prawns bought from different farmers have to be tested carefully by processors in order to ensure compliance with export standards.

3.0 Domestic environmental impacts and considerations of production for exports

Tea

- Soil erosion, degradation of land and loss of productivity are the main environmental problems in the tea sector, especially with seedling tea and poorly managed and abandoned tea lands. The available studies have shown that poorly managed and abandoned tea lands lose sediments 15 times faster than in a home garden and 20-22 times faster than in wet zone forests (Wickramasinghe, 1988). According to the Ministry of Environment and Natural Resources, 30 percent of tea lands in wet zone area are considered to be marginal or not economically viable for continued cultivation. The erosion level is also high in plantations which do not follow appropriate conservation practices, particularly on steep and sloping lands. This has direct impacts on the loss of productivity of tea lands.
Currently, the majority of tea lands in Sri Lanka are managed by the private sector. Private management companies have focused on short-term profits by extracting higher yields with the use of inorganic fertilizers and other agrochemicals. To a great extent, conservation activities, such as replanting, infilling and bush management, have been neglected. An inter-estate analysis of the management quality of tea plantations indicated that most tea estates had become marginal (Illukpitiya, et. al., 2004).

The Tea Research Institute of Sri Lanka has taken initiatives to promote soil conservation practices among planters by creating awareness and conducting research studies to show the relationship between soil conservation and productivity. According to the Tea Research Institute, the problem is not that planters are not adapting soil conservation practices. They are adapting soil conservation practices to various degrees, but not sufficiently to reduce soil losses in the long term. The reality is that the cost of conservation is high. On the other hand, soil conservation is not an issue which is given priority in their budget as the results are not realized in the short term. Therefore, long term management needs to implemented in order to make tea plantations ecologically and economically sustainable (Illukpitiya, et. al., 2004).

Desiccated coconut

- **Effluents (coconut sap) released from coconut mills**

The main waste in coconut mills is coconut water (sap), which is mixed with normal washing water. This wastewater is discharged to the neighbouring lands and water bodies causing environmental damage to the vegetation, ground water resources and water bodies. Wastewater has high concentrations of biodegradable compounds, including carbohydrates, oil and grease. According to Gunadasa (1999), a typical factory with a daily capacity of 50,000 coconuts, discharges 40,000 to 60,000 litres of wastewater per day. Due to rapid population growth, the increase of settlements near coconut mills demands that discharge standards be imposed. Currently, the industry is faced with putting in place long term solutions to overcome the environmental problems created by wastewater. The Coconut Development Authority (CDA) has set up two treatment plants at two coconut mills on a trial basis. The CDA has introduced a financial assistance programme under different schemes to support desiccated coconut mills to set up treatment plants. However, due to the shortage of coconuts at certain periods of the year, mills are not operational. Therefore, mill owners do not have sufficient incentive to set up treatment plants given the periodic productivity of the mills.

- **Energy use in coconut mills**

The cost of the raw material (coconuts) represents 90% of the cost of desiccated coconut. Since the export price of desiccated coconut has a significant influence
on the export market, the industry has found ways to reduce the unit cost of production. One method has been to improve the efficiency of processing by conserving energy and adapting cleaner production technologies. According to estimates, the energy consumption of a traditional mill is about 6.51 kWh/kg of desiccated coconuts based on lower efficiency and use of firewood in broiler and batch type desiccators. However, the energy consumption is significantly lower in modern mills, averaging about 2.27 kWh/kg of desiccated coconut due to the use of oil-fired broilers and continuous dryers (Kumar, et. al., 2003). According to estimates, the desiccated coconut sector in Sri Lanka consumes about 21,660 tonnes of firewood, 16.5 million litres of furnace oil and 10 GWh of electricity annually.

- **Gas emissions**

 The combustion of fuel oil and firewood in the production process of desiccated coconut results in significant air pollution. The main gaseous emissions from desiccated coconut boilers are CO$_2$, CO, SO$_2$, and NO$_2$. Gas emissions from a traditional mill are higher than from a modernised mill.

Prawns

- **Disease outbreaks**

 Uncontrolled expansion of the prawn farming industry has resulted in the outbreak of disease. Sri Lanka experienced three major disease outbreaks in 1988 to 1990, 1996 and 2003. It is recorded that the first outbreak was due to White Spot Disease and resulted in a loss of production of 35 to 70% of the stocks. The main reasons for these outbreaks were poor farming practices, poor water quality, poor soil conditions and poor larval imports. In the second outbreak, caused by White Spot Disease and Yellow Head Virus in 1996, 85% of the total farm area became non functional (Jayasinghe, 1998). As a result, prawn farms lost one billion Sri Lankan Rupees in export income (Siriwardena, 2001). A third major outbreak of disease (White Spot) happened in 2003, with impacts on the production capacity and export earnings of the industry.

 In addition to these major disease outbreaks, there are frequent localised outbreaks in prawn farms due to bacterial infections. Poor sediment conditions and the build-up of acid sulphate in the soil are contributing factors (Jayasinghe, 1998).

- **Other environmental issues related to prawn farming**

 The rapid expansion of prawn farms over the past decade has contributed to several environmental problems. Concern has been raised about the destruction of ecologically sensitive habitats, loss of wildlife, and the adverse effects on agricultural lands, wild fish populations and ground water quality. Among these
problems, the consequence for water quality is critical. Prawn farms take in water from, and discharge effluents into the same water source through the “Dutch canal”. In addition, only a few Sri Lankan prawn farmers have put in place effective effluent treatment procedures. Due to unplanned inlet and outlet canals, the effluent water discharged from a prawn farm is often pumped into the adjoining farm. On the other hand, discharge of effluents results in deterioration of water quality of major water sources. High salinity of water in the ponds is also seen as a major problem by prawn farmers. Some farms tap into ground water resources to dilute the high salinity. This is not an environmentally sound practice and causes several environmental problems.

According to the estimates of the Ministry of Fisheries, more than 2,000 hectares of mangroves in the North Western Province have been destroyed due to prawn farming. In addition, paddy and coconut lands in the North Western coastal belt have been affected. Lack of adequate supply of fresh drinking water in the area has resulted in a high ground water demand and a conflict among prawn farmers and villagers in the area over the common water source.

Village communities living in prawn farming areas have complained that the extraction of large volumes of ground water by the industry have caused increasing problems, such as salt water intrusion into wells and agricultural lands, loss of livestock grazing lands and loss of ground water (FAO website).

Section B: National Experience in Improving Export Competitiveness and Environmental Sustainability

- **Phasing out of methyl bromide in tea plantations**

 Methyl bromide is used in tea plantations in Sri Lanka for soil fumigation in tea nurseries to eradicate nematodes, weed seed and soil borne pathogens. Methyl bromide is an ozone-depleting substance and is being phased out by the Montreal Protocol. It is also widely recognised that methyl bromide is hazardous to humans and animals as it causes eye and skin burns on contact. Therefore, the Sri Lankan Ministry of the Environment took the initiative, with funding from the UN Development Programme (UNDP) and technical collaboration with the Sri Lanka Tea Research Institute, to increase research to find cost effective alternatives to methyl bromide. The Tea Research Institute is developing cost effective alternatives so that Sri Lankan tea plantations can phase-out the use of methyl bromide (UNDP website).

- **Minimising the residue levels of Sri Lankan tea**

 Sri Lankan tea has been rated as the world’s cleanest tea in terms of pesticide residues. The International Organisation for Standardisation (ISO) carried out an analysis of tea samples from all major tea producing countries in the world.
At the 17th Technical Committee Meeting on Tea of the ISO in February 1997, the ISO confirmed that Sri Lankan tea has the lowest residue levels compared to other tea producing countries. Sri Lanka is implementing the Pesticide Control Act of 1980, which regulates the import of acceptable pesticides. In addition, the Tea Research Institute has been investigating alternative methods, such as the biological control of pests and use of integrated pest management techniques. Moreover, the coordinated effort of tea growers has helped in reducing pesticide residue levels in Sri Lankan tea.

- **Plans by the Sri Lankan Government to conform to international standards for tea**

 Significant efforts are underway in Sri Lanka to ensure that tea exports conform to international standards. Seven large tea exporters and four factories have already taken the initiative to follow HACCP procedures. A few private sector companies provide technical support to exporters and manufacturers to follow these procedures. The Sri Lanka Tea Board is planning to support exporters and manufacturers by utilising money from the Tea Stabilisation Fund and the remainder of the Tea Development Fund to upgrade the tea factories and export warehouses to meet international standards and to obtain certification.

- **Standardisation of MRLs in Tea**

 The Indian and Sri Lanka Tea Boards have been discussing the harmonisation of maximum residue levels (MRLs) for pesticides in black tea, which will be applicable internationally and replace the myriad MRL standards imposed by different countries. With assistance from the Codex Alimentarius Commission, the FAO Intergovernmental Group on Tea will finalise the standards and prepare guidelines (FAO, 2005). The lack of harmonisation in MRL standards can act as a trade barrier and impose significant costs of compliance on tea exporters.

- **Minimising soil erosion on tea plantations**

 Private plantation companies are being assisted by the Asian Development Bank under the Plantation Sector Reform Project to improve soil conservation of degraded tea lands through crop diversification and other measures. This project aims to illustrate the long term benefits of planting cash crops on degraded tea land with adequate measures in place to minimise the adverse environmental impacts, such as soil erosion (ESCAP Virtual Conference).

- **Coconut wastewater treatment**

 In Sri Lanka, coconut wastewater treatment plants are in the process of being developed. The National Engineering Research and Development Centre of
Sri Lanka (NERD) has developed a cost effective and environmental friendly anaerobic granular system for treating coconut wastewater using biogas technology. NERD has obtained a patent for this technology and it is ready for commercialisation. A full scale prototype of this wastewater system is being tested by the Industrial Service Bureau (SMI, 2002).

- **Actions to overcome disease outbreaks and other problems in the prawn industry**

The main government policy has been to regulate the expansion of the prawn industry through permits issued by scoping committees of the Ministry of Fisheries and provincial level institutions. After the change in Government in 1995, land encroachment increased and prawn farms were started without licenses. This resulted in an overcrowding of prawn farms, social conflicts, environmental problems and disease outbreaks.

After the third outbreak of disease in prawn farms, the National Aquaculture Development Authority (NAQDA) instituted measures to regulate prawn farming. NAQDA regularly monitors and regulates prawn farms. In 2003, most of the 130 hatcheries produced poor quality post larvae. NAQDA appointed a committee and inspected these hatcheries and took action to regularise only those 50 hatcheries which were producing high quality post larvae. NAQDA also decided to screen the existing brooder stock to eliminate disease. In this way, NAQDA was able to stop the spread of disease further. In addition, NAQDA has been training prawn farmers to adhere to best management practices. NAQDA also organized the cleaning of the Dutch canal, which is the main source of water for prawn farms.

NAQDA has introduced a zoning plan and a crop calendar for the farmers to reduce the risk of disease spreading. In addition, NAQDA is not allowing new farms to be set up in the North Western Province. In order to expand the prawn industry to meet export demand, NAQDA is planning to introduce new prawn farms in Batticaloa. A zoning map for Batticaloa is being prepared with the help of the Eastern University and the National Aquaculture Resource Agency (NARA) using geographic information system (GIS) techniques to identify suitable sites for prawn farms. The intention is to develop infrastructure for the industry with a view to minimise social and environmental problems, including the participation of the local community.

Section C: Recommendations

Government policies to improve export competitiveness of SMEs on the basis of environmental and health standards

- The Government should improve the awareness and level of understanding of international trade agreements related to health and environment, such as the
TBT and SPS Agreements of the World Trade Organisation. This has to be done in relevant government institutions and, importantly, in the private sector through industry clusters, traders associations, growers, workers and processing factory owners. Incentives should be offered to encourage the industry to adhere to voluntary standards in additions to the mandatory requirements to enhance commercial advantage and secure market access.

- The Government should put in place a mechanism in partnership with the relevant sectors to provide regular market information to industry stakeholders and to keep them informed of changes in trade regulations.

- The Government should study trade regulations and coordinate with relevant private and public institutions with the technical capacity to inspect and monitor export-related standards. It would be useful to simplify the procedures to obtain certifications in a cost and time efficient manner.

- The Government should help to improve the competitiveness of SMEs in export markets by providing financial and technical support to comply with standards and obtain certification. Many rural-based industries cannot afford the Sri Lanka Standards Institution (SLSI) health quality inspection services or SLSI certification.

- The Government should identify the technical capabilities of local R&D institutions. If these capacities are not sufficient to ensure compliance with international standards, the Government should adapt various strategies to improve the technical capabilities of the relevant local institutions.

- The Government should find ways to improve the infrastructure facilities since most post-harvest losses are due to poor technology, storage facilities and road/transport conditions.

- The Government has to take urgent action to support SMEs to obtain internationally recognised certification, such as HACCP, in order to maintain the tea export markets. Some large exporters and factories have already taken the initiative to follow HACCP standard in Sri Lanka. However, SMEs face difficulties in following these standards due to the high capital investment required. Government support for SMEs is still in the planning stage.

Government polices to improve environmental sustainability

- The Government should develop long term development policies and plans to ensure environmental sustainability, especially for the prawn sector which is not a traditional export sector in Sri Lanka. Thus far in Sri Lanka, environmental problems are tackled through short term *ad hoc* measures. Environmental problems related to prawn farming are a prime example. However, NAQDA is developing long term plans to improve the industry.
Lack of financial and human resources are constraints that NAQDA is facing and should be addressed by the Government.

- It will be essential for the Government to develop an integrated approach in the prawn sector, which defines the roles of different stakeholder institutes and coordinates efforts to improve quality and productivity. The Ministry of Fisheries has a role to play in registering legal prawn farmers and monitoring their activities with the help of NAQDA. This will help the long term growth of the industry by minimising disease outbreaks and increasing the quality of the products. This approach will help to reduce the cost of testing prawns for antibiotic residues. Government institutions need to coordinate activities with other stakeholders, such as processors, exporters and prawn farmers in orders to ensure the long term sustainability of this sector.

2. Public-private partnerships

- In Sri Lanka, the tea sector is highly organised compared with other sectors. Partnerships between the private and public sectors in the prawn industry have a potentially important role to play and should be encouraged.

3. Regional cooperation mechanisms and modalities

- Regional cooperation and technical assistance is required to improve national capabilities to comply with international standards related to health and the environment.

- Financial support is essential to improve the standards of processing and manufacturing SMEs in order that the industry can meet international standards.

- Sri Lanka’s capacity to put in place an integrated approach in the industries identified in this paper will require significant and sustained R&D. Sri Lanka spends only a small percentage of GDP on R&D. In order to improve competitiveness in its export industries, the financial support of donor agencies is vital and can usefully be developed through enhancing regional cooperation.

References

Asian Productivity Organisation (APO), 2004, Quality enhancement in food processing through HACCP at http://www.apo-tokyo.org/00e-books/AG-14_HACCP/01_Summary_HACCP.pdf

Tea Board of Sri Lank, 2006, Tea market update.

White, Roger, et. al., 1995, *Land Use Change.*

UN Development Programme, 2006, Alternatives to methyl bromide in tea plantations at http://www.undp.lk/AlterMethyl.html

Important facts regarding Ceylon teas and health

Meetings

To assist in the research for this paper, discussions were held with the following officials:

- Mr. Palitha Sarukkodi, Statistic Division, Sri Lanka Tea Board
- Mr. Udugampola, Tea Commissioner, Sri Lanka Tea Board
- Ms. Chandani Abegunawardena, Deputy Director, Export Development Board
- Ms. Nalika Kodikara, Assistant Director, Sri Lanka Tea Board
- Mrs. Narandeniya, Product Officer – Prawns, Export Development Board
- Mr. W.K. Amarasinghe, Product Officer – Coconuts, Export Development Board
- Dr. D.M. Weerakoon, Director General, National Aquaculture Development Authority
- Dr. Sarath Ranaweera, Biofoods Ltd.
- Mr. Chandraratne Vithanage, National Chamber of Commerce
- Mr. Ashoka Jayakody, Head, Economic Division, Tea Research Institute
- Information Officer, Coconut Development Authority
- Mr. Ruchira Perera, Export Manager, Sri Lanka Coconut Producers Cooperative Society
- Mrs. Priyanka, Sri Lanka Standards Institution
- Mrs. Satharasinghe, Sri Lanka Standards Institution
- Mr. Tilak Wickramasinghe, Sri Lanka Standards Institution