Methodological Issues in Data Science

Wayne Wobcke

School of Computer Science and Engineering
University of New South Wales

e-mail:w.wobcke@unsw.edu.au
Overview

- Data Science
- Bias
- Overfitting
- Human Expertise
- Slicing and Dicing
- Combining Datasets
- Validation
Data Science

Example: Mobile Phone Data includes location of cell towers

- Location is Angkor Wat and time is 1 day ⇒ tourist?
- Or, journey “similar to” typical tourist trips ⇒ tourist
- Location is shopping centre ⇒ shopping (if not home)?
- Most frequent called person ⇒ spouse? (if married)
- Spouse ⇒ opposite gender (use as a check)
- Location is port and truck driver ⇒ shipment
- Destination(s) of truck ⇒ type of shipment?

Methodology: Emphasis on dealing with multiple levels of uncertainty
Bias

Bias = Propensity for method to generalize (good or bad)

- Dataset not representative of population
 - Only people in areas with phone towers have phones
 - Only poorer people need “access” to phone credits

- Training data “discriminates” against certain groups
 - Learner trained on white male faces

- Learner generalizes “wrong” features
 - White background (only pictures of snow leopards are in winter)

- Learner “misses” relevant features
 - Seasonal effects of population movement (food shortages)

© W. Wobcke 2019
Overfitting

Overfitting = Fit given data too closely and not work in other contexts

Example: How not to measure wealth index (Blumenstock et al. 2015)

- Mobile phone data with 5088 features and 856 labelled examples
- Choose features based on whole dataset (not training set)
- Don’t consider what is Rwanda-specific about this data
- Use non-standard methodology drawn from another paper
- Ignore sensible (human-generated) baselines
- 5-fold cross-validation produces 5 models, not one

Claim: Most neural network/deep learning models overfit
Human Expertise

Essential when data is limited in quality, quantity (most of the time)

- Human suggests relevant features
 - Protest less likely to be violent if venue private
 - AfPak ontology of events of interest to conflict progression

- Human defines useful indicators
 - Village is safe if market is open at night

- Human validates model output
 - Check agreement with model on 15% random sample
 - Verify main features used by the model
 - Define baseline for comparative performance
 - Cross check model output with other datasets

© W. Wobcke 2019
Slicing and Dicing

- Data may only be reliable in certain contexts
 - May be able to determine event occurrence, not details
 - Sentiment analysis notoriously inaccurate

- May want to analyse subgroups by region, status, etc.
 - “Big data” can soon become “small data”
 - Need statistical methods to assess reliability
 - Map quality of data to quality of resulting decision
Combining Datasets

Use of only one type of data is insufficient for many purposes

- Especially social media data (Twitter, Facebook)
- Especially with complex metrics and indicators
 - Population health using images of hospital carpark
 - Rainfall locations and amounts using satellite data
- Need triangulation/corroboration, not increased uncertainty
 - Need to “correlate” independent data sources
Validation

Is data fit for (what) purpose?

- No model is ever perfect (especially learned models)
- Statistical correlations are usually very weak
- Contextualize models to local circumstances
- Cross check model outputs with other datasets
- Express uncertainty associated with conclusions/decisions
- “Big data” methods can provide “early warning” signals
- Complement national statistics with different time scales
- Continually validate models as assumptions vary

© W. Wobcke 2019
National Statistics

- Can define metrics, but still have to map to indicators
- What are the statistics used for (tolerance of error)?
- Statistical methods to assess reliability survey ↔ data
- Could be possible to also use social media location data
 - Social media users have GPS location
 - Social media users form a social network
 - Social media users subset of all users