
Lecture 3: Introduction to Text Based Prediction and 

Classification

Ben Shepherd, Principal.

Ben@Developing-Trade.Com

1

mailto:Ben@Developing-Trade.Com


Key Takeaways

2

1. Artificial neural networks (ANNs) are powerful prediction tools. They have a 
fundamentally different philosophy from regression-related methods: the 
emphasis is on learning through repeated prediction and adjustment based on 
observed error.

2. While technically complex, the intuition behind ANNs is easy to grasp. With the 
basics in place, it is possible to start using them quite quickly.

3. Workflow is familiar from the general ML workflow.

4. ANNs have been found to work very well with text as input, i.e. transforming 
text into numbers and using it to predict or classify.

5. R’s Keras package offers a very powerful but easy to use approach to 
implementing ANNs.

6. Economics research in this area is in its infancy, so there is huge scope to make a 
contribution!



Outline

3

1. Motivation: A Text-Based Classification Problem

2. Artificial Neural Networks for Prediction and 

Classification

3. Text as an Input

4. Demonstration in R 1: Revisiting the LPI

5. Demonstration in R 2: Classifying NTMs



1. Motivation: A Text-Based Classification 

Problem

4

 So far, we’ve looked at two ingredients:
 Basic ML tools.

 Basic text-as-data tools.

 This lecture connects the two by asking the following question: can 
we use text to predict or classify, in the same way we use standard 
quantitative data?

 To answer it, we need to introduce a new tool: the artificial neural 
network (ANN) that is widely used in text-based prediction and 
classification problems.

 ANNs have a recognizable workflow from basic ML, but work in a 
fundamentally different way, so we start by setting up a standard 
quantitative problem to fix ideas, then we move to text.



1. Motivation: A Text-Based Classification 

Problem

5

 UNCTAD’s TRAINS database 
catalogues NTMs using the MAST 
classification.

 One of the options is to download a 
dataset with (lots of information) + a 
verbal description of a measure from a 
human coder, and a MAST code for 
the type of measure.

 Can we take out one element of 
human intervention by taking the 
short descriptions and using them to 
predict NTM codes with reasonable 
accuracy?

 First part of a bigger challenge: take 
the full text of laws or regulations and 
use them to predict NTM codes, 
products, etc.



1. Motivation: A Text-Based Classification 

Problem

6

 From the work we’ve already done, you can hopefully see 
the two steps in this problem:

 Turn the short description into input data.

 Use a model to use input data to predict output data.

 Much of the workflow will be familiar:

 Preprocessing of text.

 Cross-validation.

 Etc.

 But we need a more sophisticated approach to ML before 
we can really crack this kind of problem…



2. Artificial Neural Networks for Prediction 

and Classification

7

 Lasso-type approaches to ML are quite recognizable from econometrics, and can be easily related to the 
standard OLS model.

 Remember the different emphasis, though: prediction rather than inference.

 Artificial Neural Networks (ANNs) have the same emphasis on prediction, but work in a fundamentally 
different way.

 Standard practice is not to even report anything like “coefficients”.

 Focus is almost exclusively on prediction accuracy.

 The math behind ANNs is sophisticated, in terms of understanding the mechanics of the algorithms that 
power them.

 The intuition is more accessible, so that is our focus here. Our objectives are to identify:

 The intuition behind how an ANN works.

 The different choices that go into making a functional ANN to solve a prediction or classification problem.

 ANNs are everywhere in our daily lives, usually in a “deep learning” format:

 Image recognition.

 Predictive text.

 Automatic translation.

 …



2. Artificial Neural Networks for Prediction 

and Classification

Inspiration Implementation

8

Sources: https://www.kdnuggets.com/2019/10/introduction-artificial-neural-networks.html#:~:text=%E2%80%9CArtificial%20Neural%20Networks%20or%20ANN,to%20solve%20a%20specific%20problem.%E2%80%9D

& https://towardsdatascience.com/understanding-neural-networks-what-how-and-why-18ec703ebd31. 

https://www.kdnuggets.com/2019/10/introduction-artificial-neural-networks.html#:~:text=%E2%80%9CArtificial%20Neural%20Networks%20or%20ANN,to%20solve%20a%20specific%20problem.%E2%80%9D
https://towardsdatascience.com/understanding-neural-networks-what-how-and-why-18ec703ebd31


2. Artificial Neural Networks for Prediction 

and Classification

9

 ANNs do not see the world through the lens of 
a regression problem.

 Rather, they try to “learn” by using inputs to 
product outputs.

 By doing it over and over, the model can refine 
the weight given to each input so that predictions 
get better and better.

 Each neuron (node, unit) takes a set of inputs and 
applies weights, plus a set bias factor.

 It then sends this linear combination as an output 
through an activation function, which can be 
nonlinear.

 Deep learning means, in essence, stacking a 
number of layers of neurons one on top of the 
other.



2. Artificial Neural Networks for Prediction 

and Classification

10

 The ANN is run recursively to refine the weights. 
 This is what “learning” means.

 A common algorithm is stochastic gradient descent, which is a way of 
minimizing a defined loss function given the data and the structure of the 
model.
 Gradient = error gradient, so move down it to try and find a minimum.

 Here’s the basic idea (details are complex):
 Initialize the ANN with random weights.

 Take the inputs and apply processing in each layer, combining inputs and 
weights, regularizing using the activation function, and passing to the next 
layer, until a prediction of the output can be made.

 Assess the prediction error.

 Calculate the gradients of the loss function, and use this information to 
decide how to adjust each weight so as to move down the loss function.

 Rinse and repeat.



2. Artificial Neural Networks for Prediction 

and Classification

11

 ANNs have many hyper-parameters that define the structure of the model and how it “learns”. For 
instance:

 How many layers will the model have?

 How many neurons (nodes) will be in each layer?

 Will dropout rules be applied (percentage of nodes randomly set to zero)?

 How many samples (observations) in each batch?

 How many epochs (full iterations) will the model be run over?

 What is the metric to assess loss?

 And many others!

 To set them rigorously, we can use a grid search, but it is very time consuming: many parameters and 
configurations. You can quickly end up estimating millions of models!

 To cut it down, try using a stochastic approach: define a model field, then sample randomly from it at a pre-
defined weight.

 For a given use of computing power, random search actually provides better results, as it enables a wider model 
field relative to grid search.

 There are typically many combinations of hyperparameters that produce relatively similar results, so choose 
the simplest model that delivers good results.

 More complex is not necessarily better: overfitting is a major risk with ANNs.



2. Artificial Neural Networks for Prediction 

and Classification

12

 A key advantage of ANNs is their ability to introduce nonlinearities.

 But this depends on the activation function that sends information 
from one layer to the next.

 Some common options:
 Linear: as simple as the name suggests. Loses nonlinearity, but produces 

non-bounded outputs. Typically the output layer of a model producing a 
quantitative prediction without bounds.

 Rectified linear (relu): good for general purpose applications; linear above 
zero; negatives shift to zero. Typically used in hidden layers.

 Sigmoid: like a logistic function, bounded between zero and one. Typically 
used as the output layer of a model producing a binary classification.

 Softmax: generalizes the logistic function to multiple dimensions. Typically 
used as the output layer of a model producing a multinomial 
classification.



2. Artificial Neural Networks for Prediction 

and Classification

13

 Ideally, we would use k-fold CV to analyze the prediction 
ability of an ANN.

 But because building and running the model is so time 
consuming, typically we just use a testing-training split. The 
testing subsample is typically referred to as “validation”.

 A standard approach is to hold back part of the data for out of 
sample predictions. Then run the ANN again keeping part of 
the sample for validation.

 Be very careful of overfitting, as indicated by validation loss 
much higher than training loss. A typical pattern is that training 
loss tends to fall as model complexity and number of epochs 
increase, but validation loss will not follow the same pattern.



2. Artificial Neural Networks for Prediction 

and Classification

14

 The basic workflow is easily recognizable from what we 

have seen before:

 Get the data into the right configuration (typically matrices).

 Normalize the data (Lasso did this automatically!)

 Split into testing and training samples.

 Set up the model.

 Run the model and examine prediction ability.

 Repeat the process over a plausible set of hyperparameters.

 Choose the model with best predictive ability.

 Produce out of sample predictions, and check accuracy.



3. Text as an Input

15

 We have seen that with the right pre-processing, text can be a 
kind of data just like numbers.

 To use text as an input for an ANN, we need to go one step 
further: we actually turn text into numbers!

 Actually, we already have all the tools we need to do this from 
the last session.

 First, go through whatever pre-processing we want to apply:

 Tokenize.

 Remove stop words and numbers.

 Lemmatize.



3. Text as an Input

16

 Next, calculate word counts: the number of times each 

word appears in a text input.

 “A service provider may deliver any service without 

quantitative restriction” would show a count of two for 

“service” after lemmatization.

 Typically, we will only use a subset of the most frequent 

words rather than the full vocabulary.

 Transform the word counts to a document term matrix, 

as we did for LDA.



3. Text as an Input

17

 This is how we ultimately 
want the data to be 
organized:
 One row per text fragment = 

one row per observed 
outcome.

 One column per word.

 Cells indicate the number of 
times each word appears in 
the text fragment contained in 
each row.

 This should be pretty 
intuitive, as it is the same 
way we would set up a 
regression problem!



3. Text as an Input

18

 This is the most transparent way of preparing text as an ANN 
input.

 There are other ways of doing it in R that involve much less 
programming, but the pre-processing is typically different: stop 
words may stay in, words may not be lemmatized etc.

 Extension: natural language applications frequently use a 
different approach (“embedding”) and a different type of ANN 
(“convolutional”), but they are outside scope here.

 Rationale for retaining all words, as context is important, as is order.

 But as the demonstration will show, we can actually do very well 
with just a simple ANN



4. Demonstration in R 1: Revisiting the LPI

19

 Recall our problem from Lecture 1: the LPI is being 
discontinued in its current form, and only ever had partial 
coverage by year and by country.

 Can we use WDI data to predict the LPI accurately?

 We’ve seen results using a Lasso.

 To get the hang of ANNs, let’s try exactly the same exercise 
with an ANN.

 Note that all the preprocessing will be same, so we can move 
straight to how modeling is different.



4. Demonstration in R 1: Revisiting the LPI

20

 ANNs sound intimidating, but as 
usual “there’s a package for that”.

 The main package we are 
interested in is Keras: it makes 
building ANNs very easy.
 The backend is provided by 

TensorFlow.

 In essence, we will be using an R 
interface to Python tools that also 
use C++ code…

 Together, the packages give you 
access to cutting edge tools, 
coming from the good people at 
Google.



4. Demonstration in R 1: Revisiting the LPI

21

model <- keras_model_sequential()

model %>%

layer_dense(units = 50, activation = 'relu', 
input_shape = c(55)) %>%

layer_dense(units = 25, activation = 'relu') 
%>%

layer_dense(units = 12, activation = 'relu') 
%>%

layer_dense(units = 1)

 The easiest way to build a Keras ANN is to 
proceed sequentially, i.e. add layer after 
layer as a stack.

 The simple ANNs we are interested in use 
“dense” layers.

 Here we have code to create an ANN 
with:

 A first layer that takes 55 inputs and has 50 
neurons with a relu activation function.

 A second layer with 25 neurons and a relu 
activation function.

 A third layer with 12 neurons and a relu 
activation function.

 An output layer with a single output and a 
linear activation function.

 This is a pretty typical set up for a 
“regression”-type ANN problem: we want 
predictions of some real valued variable, 
without bounds.



4. Demonstration in R 1: Revisiting the LPI

22

model %>% compile(

loss = "mse",

optimizer = "adam”

)

training <- model %>% fit(

x_train, y_train, epochs = 
500, batch_size = 100, 
validation_split = 0.25

)

 Now we tell the model how 
we want it to work its 
magic:
 The loss function is mean 

squared error, which is typical 
for a “regression” problem.

 The choice of optimizer is less 
important: adam is a good 
general purpose algorithm.

 Then we train the model by 
telling it to run in batches of 
100 for 500 epochs, keeping 
25% of the training sample 
for validation.



4. Demonstration in R 1: Revisiting the LPI

23

grid_search <- list(

dense_units1 = c(10, 25, 50),

dense_units2 = c(10, 25, 50),

dense_units3 = c(10, 25, 50),

dense_units4 = c(10, 25, 50),

dense_units5 = c(10, 25, 50),

dense_units6 = c(10, 25, 50),

dense_units7 = c(10, 25, 50),

dense_units8 = c(10, 25, 50),

dense_units9 = c(10, 25, 50),

dense_units10 = c(10, 25, 50),

dropout = c(0, 0.1, 0.2)

)

runs <- tuning_run("core code.R", flags = 
grid_search, confirm = FALSE, sample = 0.01)

 What about grid searching over the 
hyperparameter space?

 Tfruns is a package that helps automate it:

 Write a core R script with your ANN, including a 
set of flags for parameters that will be changed 
during the search.

 In your main file, call Tfruns with a list defining 
the hyperparameter space and a reference to 
your core script.

 Assess results by choosing the smallest validation 
loss.

 Use the sample = 0.01 option to use random 
sampling of (say) 1% of the total number of 
specifications.

 Here we try ten layers with different 
combinations of nodes (10, 25, 50), with use of 
dropout regularization.

 Search is random over 1% of the models defined 
by the list (=0.01 * 3^11 = 1,771).

 This can be very time consuming!



4. Demonstration in R 1: Revisiting the LPI

24

 Now we look at implementation.

 Remember that we already have a model that performs 

ok (the Lasso).

 ANNs are excellent tools for prediction, but they are not 

always and everywhere better, particularly in contexts 

with small amounts of data.

 So it is always good to have a baseline of comparison!



5. Demonstration in R 2: Classifying NTMs 

25

 UNCTAD’s TRAINS 
database has an option to 
download a coding of 
measures, with a short text 
description of the measure 
by a human coder.

 Can we use the descriptive 
texts to classify measures by 
code using an ANN?

 To simplify the problem, let’s 
use letter codes only, rather 
than the full alphanumeric 
codes.



5. Demonstration in R 2: Classifying NTMs 

26

 Preprocessing uses the tools we’re familiar with from Lecture 2.

 But there are a few points of difference:
 We need to identify just a subset of the total vocabulary, to keep the 

number of input nodes manageable.

 We need to put everything in matrix form. DTM is a separate object 
class, so there is an extra step to transform it to a standard matrix.

 A final trick is to use to_categorical to change a factor list (the codes) 
into a matrix with numerical dummies; this is the format Keras likes for 
multinomial classification.

 Note that the loss function will be different from a regression-type 
problem (MSE):
 For binary classification: binary cross entropy.

 For multinomial classification: categorical cross entropy.



Key Takeaways

27

1. Artificial neural networks (ANNs) are powerful prediction tools. They have a 
fundamentally different philosophy from regression-related methods: the 
emphasis is on learning through repeated prediction and adjustment based on 
observed error.

2. While technically complex, the intuition behind ANNs is easy to grasp. With the 
basics in place, it is possible to start using them quite quickly.

3. Workflow is familiar from the general ML workflow.

4. ANNs have been found to work very well with text as input, i.e. transforming 
text into numbers and using it to predict or classify.

5. R’s Keras package offers a very powerful but easy to use approach to 
implementing ANNs.

6. Economics research in this area is in its infancy, so there is huge scope to make a 
contribution!



Additional Resources

28

 A very simple overview of deep learning: 
https://towardsdatascience.com/a-gentle-introduction-to-deep-
learning-part-1-introduction-43eb199b0b9. 

 A nice collection of examples in R: 
https://blog.rstudio.com/2017/09/05/keras-for-r/.

 An example of text as input in R: 
https://tensorflow.rstudio.com/tutorials/beginners/basic-
ml/tutorial_basic_text_classification/.
 Note that it takes a different approach to preprocessing and ANN type 

and structure.

 Application of text as input, using FOMC minutes to predict 
economic variables: 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3534914. 

https://towardsdatascience.com/a-gentle-introduction-to-deep-learning-part-1-introduction-43eb199b0b9
https://blog.rstudio.com/2017/09/05/keras-for-r/
https://tensorflow.rstudio.com/tutorials/beginners/basic-ml/tutorial_basic_text_classification/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3534914

