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1. Some elements of machine learning can be seen as related to familiar concepts from econometrics, 
though the terminology often differs.

2. Econometrics tends to focus on inference; ML tends to focus on prediction (or classification).

3. Lasso and related techniques provide a convenient entry point into machine learning, because they are 
easily recognizable in terms of regression models.

4. Lasso, Ridge, and Elastic Net are all shrinkage estimators: they penalize OLS estimates to “shrink” some 
parameter estimates towards zero.

5. ML workflow requires discipline and focus:

1. Training/testing split.

2. K-Fold cross validation.

3. Prediction, and assessment of accuracy.

4. Be careful to avoid too much pre-testing, as the testing data will bleed into the training data.

5. Beware overfitting!

6. Simple ML applications are straightforward in R with GLMNet, though considerable data work is often 
required first.
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 ML or “algorithms” are everywhere, we constantly hear about 

them:

 When Netflix suggests a movie we might like, based on past choices.

 Automatic translation of text into other languages.

 Mining of sentiment databases, like tweets.

 Predictive text in Gmail (scarily good).

 Where does ML fit into economics, and specifically into policy-

relevant economics related to international trade?

 How does ML relate to what we already know as 

“econometrics”?
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 What is the elasticity of 
bilateral trade flows with 
respect to trade facilitation 
performance?
 Data on trade flows → Gravity 

model.

 Variable of interest + controls.

 Fixed effects to account for 
panel structure.

 Appropriate econometric 
estimator (PPML) to deal with 
known issues with OLS.

 Test with diagnostics.

 Which countries are the most 
likely to experience “explosive” 
export growth in the next five 
years?
 Data on trade growth in the 

past.

 Data on country characteristics.

 Let the data decide which 
characteristics matter the most.

 Predictive algorithm, not 
econometric estimator.

 Test with predictive accuracy.
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 Y = XB + e

 We’re interested in estimates of B that:

 Satisfy desirable large sample properties 
(consistency, bias, efficiency).

 Are informative as to an economic 
mechanism underlying the problem.

 The mechanism is of primary interest.

 Econometric methods make assumptions 
about the data generating process to 
produce estimates of B with desirable 
properties.

 Pay little attention to predictions of Y.

 Y = XB + e

 We’re interested in predictions of Y, not 
estimates of B.

 ML pays (relatively) little attention to 
estimates of B.

 ML makes no assumptions about the data 
generating process.

 Typically little attention to large sample 
properties; question is simply “how well 
does the model predict Y?”
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 Estimation

 Estimation sample

 Out-of-sample

 Explanatory variables

 Estimated parameters

 Statistical model

 Goodness of fit

 Training

 Training sample

 Prediction sample

 Features

 Weights

 Regularization / Algorithm

 Predictive accuracy
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 Econometrics provides a useful entry point into ML, and some concepts “translate” relatively 
well.

 But the point of view is usually quite different: the end use of the model is different.

 Though there are cases where the relationship is much closer (e.g., matrix completion methods for 
causal inference).

 Also ML is a broad family of algorithms and approaches; we will only look at a small sample.

 There is a lot of statistics behind ML, but it is more accessible than traditional econometrics 
for practical learning.

 Mobilize basic concepts from econometrics.

 Focus initially on techniques that are closely linked to econometric models.

 Focus on an intuitive understanding of ML algorithms, not the mechanics of how they work.

 Develop a workflow/process designed to match problems to algorithms, and avoid typical pitfalls.

 Still very few applications of ML in the international trade literature, and some existing 
applications are a little eccentric.

 Lots of scope to add to the policy literature!
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Source: https://antontarasenko.com/2015/12/28/machine-learning-for-economists-an-introduction/
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 The simplest Least Absolute Shrinkage and Selection Operator (Lasso) 
solves the following problem:

 ෠𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑌 − 𝑋𝐵 ′ 𝑌 − 𝑋𝐵 + 𝜆σ𝑗=1
𝐽 𝐵𝑗

 Solution by numerical methods.

 The second terms penalizes (shrinks) weights (parameter estimates, a total of J 
parameters), so that some are zero.

 Lasso makes it possible to select features (variables) with non-zero weights 
(parameters), then use them to predict Y.

 A neat trick is that because of the nonlinearity, Lasso can have MORE 
features than observations in the dataset!
 So we can start from a potentially huge dataset, and narrow it down to the 

variables that really matter for predictive purposes. 

OLS Penalty Factor
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 A close relative is Ridge regularization:

 ෠𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑌 − 𝑋𝐵 ′ 𝑌 − 𝑋𝐵 + 𝜆σ𝑗=1
𝐽

𝐵𝑗
2

 Same principle as Lasso, but the penalty works on the square 

of the weight rather than its absolute value.

 Elastic Net regularization combines these two approaches:

 ෠𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑌 − 𝑋𝐵 ′ 𝑌 − 𝑋𝐵 + 𝜆σ𝑗=1
𝐽

(
1−𝛼

2
𝐵𝑗
2 + α 𝐵𝑗 )

 So for alpha = 0, EN = Ridge. For alpha = 1, EN = Lasso. For other 

alphas, EN is a blend of the two approaches, with the total penalty 

governed by lambda.

OLS Penalty Factor
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 The simplest applications of shrinkage regularization are linear (like OLS).
 But can also be used with nonlinear models like Poisson, Logit, etc.

 Choice depends on the nature of the problem, as well as empirical performance.

 Shrinkage regularization is an easy entry point into the ML literature, 
because it is essentially a different way of looking at a regression problem.
 Before the days of widespread ML (~2000), I learned about ”ridge regression” as 

a way of dealing with collinearity in regression models.

 The key difference in applying shrinkage regularization as an ML algorithm 
really lies in:
 Type of problem.

 Presentation of results.

 Workflow and model comparison.
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 How do we implement Lasso in an ML context?

 Recall the problem we’re solving:

 ෠𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑌 − 𝑋𝐵 ′ 𝑌 − 𝑋𝐵 + 𝜆σ𝑗=1
𝐽

𝐵𝑗

 The key choice is the penalty parameter 𝜆.

 In an ML context, we want to choose 𝜆 so that the model 

has the “best possible” predictive performance, as 

measured by some criterion such as mean squared error.
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 A typical ML approach to model selection is cross-

validation:

 Split the data into training and test samples.

 Estimate a model using the training data only, then use it to 

make predictions for the test sample.

 Compute a prediction accuracy measure.

 Repeat for all the candidate models.

 Select the model with the highest prediction accuracy 

measure.
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 The gold standard in many ML applications (including Lasso as an example) is k-fold 
CV

1. Randomly split the data into k subsamples.

2. Hold back one of the k subsamples as a testing sample, then estimate a model 
using the remainder of the data as a training sample for a given value of 𝜆.

3. Use the model to make predictions for the testing sample, and calculate MSE.

4. Repeat steps 1-3 for the other k subsamples, and calculate average MSE.

5. Repeat steps 1-4 for alternative values of 𝜆 by moving over a grid.

 K=10 is typical, use 5 for quick exploratory work.

 Don’t worry: the computer automates k-fold cross-validation!
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 If we search over a grid for 𝜆, we can select the model 

with lowest average MSE for the testing sub-samples.

 It represents the “best possible” predictive performance.

 The selected model will imply a certain number of zero 

weights, so the non-zero weights represent features that 

have been “selected” by the model on the basis of its 

predictive performance.

 Final step: obtain predictions using the full sample.
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 K-fold CV helps minimize the risk of over-fitting the data, but we need to be 
rigorous and disciplined in exploratory work.

 Given enough features, we can always come up with a model that will fit arbitrarily well in-
sample.

 CV focuses on out-of-sample predictions, but if we do it too much in pre-testing, we are 
”cheating” by effectively giving the model the full sample.

 So beware of effectively using the full sample to overfit a model—performance will look 
very good, but when you use it with new data, it will do much worse.

 Familiar problem from forecasting applications in econometrics.

 First, split the sample into training and testing subsamples.

 Then, use k-fold CV on the training subsample.

 Assess model performance based on the testing subsample.

 Avoid repeating this process over and over: the information from the testing 
subsample effectively ”bleeds” into the training subsample!
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 We’ve already noted that a neat feature of Lasso (and many other ML procedures) is that the 
number of features can be large relative to the sample.

 Typically a major problem for econometric models, both because inference is difficult due to 
correlations among variables, but also due to mechanical limits.

 A linear Lasso, like OLS, assumes a linear model for the relationship between features/weights 
and the prediction variable.

 But if our only limit on the number of features is computing time, we can include:

 Nonlinear terms (powers).

 Interactions.

 Not uncommon to start with thousands of features, and use Lasso selection to identify a small 
number with strong predictive value.

 Since we’re only secondarily interested in inference, we don’t necessarily need a behavioral 
model to support nonlinearities or interactions.

 Again, beware of overfitting!
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 The World Bank’s Logistics Performance Index (LPI) summarizes performance on six 
dimensions using a survey.

 Data are available for a range of countries (not all; ~150) for 2007, then 2010-2018 at two-
year intervals.

 Although widely used in policy settings, the LPI methodology will be fundamentally changed in 
the near future, meaning that new observations will not be comparable with old ones.

 Wouldn’t it be nice to:

 Fill in LPI values for countries and years not covered?

 Continue to produce LPI estimates that are compatible with the “old” methodology?

 From an ML perspective, this is a classic prediction problem: we can’t run our own surveys, 
but can we use observations on existing data series to make “good” predictions of the LPI?

 Extending the index is then just a question of using observations of those series for other countries and 
years.
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 We can come at the problem from two complementary 
angles:
 Prediction: We want to use ML to predict LPI scores based on other 

data.

 Classification: We want to use ML to put countries into their LPI 
quintiles based on other data.

 The WB produces scores, but often talks about countries in 
the five performance groups (quintiles) as sharing similar 
characteristics.

 Prediction can use a linear model. Classification will use a 
multinomial model (5 categories). All can be run using the 
standard workflow and approaches including Lasso, Ridge, and 
Elastic Net.
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 How do we do this in R?

 The answer is what it nearly always is: “There’s a package for that!”.

 GLMNet: Elastic net based on the GLM family, so covers linear, Poisson, Logit, 
Multinomial, etc.

 GLMNet is less fancy than many R packages:

 It doesn’t support missing values.

 Its native format takes data in matrix form; similar for other ML approaches, so we will do 
that, even though formula wrappers are available.

 So there is some work required to manipulate the data, both inputs and outputs.

 What data can we use to predict the LPI? Let’s just try the whole World 
Development Indicators database, 2000-2019.

 Lots of missing values, so we need to clean.

 Take levels and interactions.
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 Here’s the strategy, starting with prediction:

 Clean up the data.

 Set up matrices for GLMNet, with the full set of explanatory 
variables.

 Split into training and testing subsamples.

 Run Lasso, Ridge, and 50-50 Elastic Net on the training 
subsample using 10-fold CV to choose the penalty parameter.

 Construct predictions for the testing subsample, check 
accuracy using RMSE.

 Choose a model, and use it to predict out of sample.

 Repeat the above steps for classification.

 Now for the code…
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1. Some elements of machine learning can be seen as related to familiar concepts from econometrics, 
though the terminology often differs.

2. Econometrics tends to focus on inference; ML tends to focus on prediction (or classification).

3. Lasso and related techniques provide a convenient entry point into machine learning, because they are 
easily recognizable in terms of regression models.

4. Lasso, Ridge, and Elastic Net are all shrinkage estimator: they penalize OLS estimates to “shrink” some 
parameter estimates towards zero.

5. ML workflow requires discipline and focus:

1. Training/testing split.

2. K-Fold cross validation.

3. Prediction, and assessment of accuracy.

4. Be careful to avoid too much pre-testing, as the testing data will bleed into the training data.

5. Beware overfitting!

6. Simple ML applications are straightforward in R with GLMNet, though considerable data work is often 
required first.
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 Two nice overview papers by economists:

 Athey and Imbens (2019): https://arxiv.org/pdf/1903.10075.pdf.

 Mullainathan and Spies (2017): 
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.31.2.87. 

 Quick start tutorial for GLMNet: 
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.htm
l. 

 Links to resources: 
https://antontarasenko.com/2015/12/28/machine-learning-
for-economists-an-introduction/. 

https://arxiv.org/pdf/1903.10075.pdf
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.31.2.87
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://antontarasenko.com/2015/12/28/machine-learning-for-economists-an-introduction/

