Innovative technologies protect human being and sustainable digital development
- Big data, and AI to safeguard public from electromagnetic field (EMF) from 5G

August 2022

Dr. Ki Hwea Kim and Dr. Chang Yong Son

National Radio Research Agency of the Ministry of Science and ICT, Republic of Korea
5G and alignment with AP-IS (2022-2026)

- 5G, next digital infrastructure featured by higher speed, lower latency, massive network capacities and more reliability
- ROK, the first commercial 5G in 2019 and connected 24 million subscribers by 2022 to shaping the 5G ecosystem across sector

Source: LG U+
The rapid diffusion of stations from LTE to 5G

- LTE from 2012
- 3.5 GHz 5G from 2019
- 28 GHz 5G
- Investing R&D and global debate on 6G

Source: MSIT (2022)
5G and growing concern over EMF human protection

• The basis of a new paradigm of electromagnetic wave management policy

• Significant reduction of social and economic costs is expected

• The potential of technology to prepare for the more complex and diversified future electromagnetic environment

• Provide EMF information wherever you want without time and space restrictions
Mandatory to measure the EMF

- Protecting human being from the station's electromagnetic fields (Radio Wave Act, Article 47-2)
EMF evaluation scheme of station

• **PI (Point of Investigation)** to verify the measurement start point
• **5R is defined by 5 times distances** of calculated compliance boundary (80-150m)

\[R = \frac{A \cdot P \cdot 10^{6/10}}{4\pi \cdot E^2 / \eta_0} \]

\(A \): Ground reflection factor
\(P \): Transmitted power
\(G \): Antenna gain
\(E \): Field strength
\(\eta_0 \): Reference limit for general public
\(\eta_0 \): Free space impedance (377Ω)

< Compliance boundary and BS EMF measurement point >
Limitations for EMF measurement (present)

- Stations increases rapidly
- Intelligence of communication signals such as beamforming
- Complexity and diversity of base station exposure scenarios
- Increasing public interest in EMF from new communication service
Innovative technologies for EMF prediction (future)

- National project period: 2022-2026 (5 years)
- Budget: Total US $4.7 million (US$ 0.75 million in 2022)
- Key technologies: AI, Big data, open API and open data policy to transparent and reliability

- Project structure

 01 data collector (DB, Measurement, Simulation, …)
 02 data preprocessing
 03 AI Prediction Algorithm
 04 public service

 machine, deep learning
R&D Framework (2022-2026)

data collect
- TEST BED
- high precision data collector

Big data preprocessor
- EMF characteristics

EMF analysis/modeling
- data variable
- environmental data

EMF Human exposure analysis
- AI model predictions
- Collected data
- simple prediction model formula

AI Prediction Algorithm
- Longitude
- Latitude
- Altitude
- PCI
- Distance
- EMF strength
- Actual Maximum
- EMF prediction

Open API / public service
- Service Platform/Open API
- Database
- API Server
- Mobile
- PC
- Chrome

R&D Framework (2022-2026)
Way forward and insight to facilitate AP-IS

- The development of digital technologies including 5G is *neither optimistic nor pessimistic* but how policy makers to frame enable policy and initiative.
- **Nations and policy makers faced dual missions**: how to facilitate digital technologies and how to mitigate undesired effects.
- Despite global debate over 5G, **universal 5G overcomes the criticism** such as the lack of killer applications, the sluggish rural coverage and costly price.
- **EMS (and spectrum management) have been less attention.** Nevertheless, the **presenting case drawn attention to safeguard human being**.
- **5G and EMS is the consolidation example** of connectivity (Pillar 1 of AP-IS), digital technology (Pillar 2 of AP-IS), and data and protection (Pillar 3 of AP-IS).
THANK YOU

MOVING FORWARD TOGETHER