Using Big Data
to Measure and estimate indicators
on the Nexus between Environment and Gender

UNESCAP – NSO Joint pilot project outcome
OUTLINE

- PROJECT BACKGROUND
- CONCEPT, DEFINITION OF GER
- METHODOLOGY
- ESTIMATION, OUTCOME
- CHALLENGES, LESSONS LEARNED
PROJECT BACKGROUND
AIM:
According to recommendation issued by statistical commission, to fill the gap and to measure the Nexus between Environment and Gender

INDICATOR:
Share of urban population who living in unsanitary and inadequate housing, by gender

EXPECTED OUTCOME:
1. National guidance accordance with big data utilization
2. Model testing, outcome
3. Project report
CONCEPT, DEFINITION OF GER: Can ger be appropriate dwelling?
DO MONGOLIA HAVE THE SLUM DISTRICT?

Over 200 citizens live in Ulanchuluut, neighbouring area to capital city.
INAPPROPRIATE HOUSING IN MONGOLIA

Is ger districts are slum districts? Whether is ger inappropriate housing?
INAPPROPRIATE HOUSING IN MONGOLIA

Is ger districts are slum districts? Whether is ger inappropriate housing?
CONCEPT, DEFINITION

SDG 11.1 - by 2030, ensure access for all to adequate, safe and affordable housing and basic services, and upgrade slums

11.1.1 - Proportion of urban population living in slums, informal settlements or inadequate housing

1. **Access to improved water**
2. **Access to improved sanitation**
3. **Sufficient living space**
4. **Structural quality/durability of dwellings**
5. **Security of tenure**
METHODOLOGY
ESTIMATION STEPS/ METHODOLOGY

First Gate
- HR Satellite Image from Google Earth Pro
- Micro-data validation

Second Gate
- Clean satellite image data
- Methodology (OBIA)
- Processed/Aggregate data

Third Gate
- Processed/Aggregate data
- Indicators
- Validate/Calibrate
MODEL FOR GER IDENTIFICATION

On THE EARTH SURFACE SATELLITE IMAGE

- QGIS + Orfeo ToolBox

1. Segmentation
2. Calculate some critic values for each attributes
3. Tell the model these are the Gers
4. Train the model
5. Using trained model classify the polygons

As AN IMAGE AS WELL AS XLSX FILE
ESTIMATOR, OUTCOME
THE MODEL TESTING MADE ON CHINGELTEI DISTRICT.

Illustration

The model detected the gers.

Sas.planet

Splatted into 6 pieces
THE MODEL TESTING MADE ON CHINGELTEI DISTRICT.

1. **Dark ger and former ger foundation**

 It is hard to draw the ger shape and to recognize kind of gers because the color not different from the background.

2. **Unstructured streets, roads, yards**

 It might cause the miss recognition.

3. **Objects with whiter roof**

4. **Uneven roof surface of ger**

COMPARISONS OF MODEL

RANDOM FORESTS PERFORMED BETTER, AND IT ALSO DETECTED OTHER OBJECTS AS A GER ALTHOUGH NUMBER OF WRONG RECOGNITIONS WAS FEWER COMPARED WITH OTHER TWO MODELS.

Random forest /70%/
14 out of 20 gers identified.

Decision tree /80%/
16 out of 20 gers identified. Many non-ger areas determined as a gers. Therefore, model looks like overfitted.

K nearest neighbors /45%/
9.5 out of 20 gers identified. Many non-ger areas also determined as a ger. Therefore, model did not produce good result.

For big map, it is hard to estimate the accuracy and precision of the estimation. QGIS might has potential to assess the model performance.
RESULTS

Overall population of Chingeltei: ...

Female population of Chingeltei: ...

Result from model estimation

Population & housing database/NSO/

Female population lives in ger of Chingeltei: ...

14,000 ger detected

9,072 ger
PROS AND CONS

Cost efficient and time saving
Model accuracy can be upgraded
This model has high potential to make many other estimations.

Overestimations were a huge
The result requires a lots of technical data cleaning process and it consumes time
There is a high error risk while merging the 2 data sources
CHALLENGES, LESSONS LEARNED
The problem was if we want to download a big map, the image will have poor quality. Contrary, if we want to download a high-resolution image, then need to zoom in a lot that means the image will capture a small area.

Over 100k pieces of image * Run the model 100k times

- How to split the map without missing area?
- How to run model that so many times?

SAS.PLANET IS ADVANTAGEOUS TO DOWNLOAD SATELLITE IMAGE WITH GEO REFERENCES

| High resolution satellite imagery
| Downloadable whole map at once
| Save locally, and offline working is possible

INITIALLY IMAGE PREPARATION WAS PROBLEMATIC, AND WE FOUND ANOTHER WAY TO HANDLE IT.

GOOGLE EARTH PRO
CHALLENGES, LESSONS LEARNED: CONSTRAINT OF DATA MERGING

THERE HAVE 2 WAY TO MERGE THE INFORMATION.

Option 1: Spatial join

- Centroid of Detected ger
- Location point of Household from population and household database

Option 2: Join using the cadastral parcel map

Detected gers + Cadastral layer + Household location

/From LAMGG/

Constraints:
- Coordinates will not match exactly
- Match within 20m or 30m/
- Might connect with wrong points/
- Might create duplications

Constraints:
- Quality and coverage of cadastral parcel map
- Extra data processing step
CHALLENGES, LESSONS LEARNED: TIME

ESTIMATION OF THE REALISTIC INDICATOR FOR NATIONAL LEVEL IS NOT IMPOSSIBLE, HOWEVER, MORE TIME AND WORK NEEDED.

The most time-consuming steps:

- Preparation of input imagery with high resolution
- Generate the sample shapes for model
- Run Segmentation /each time at least 2-3 hours/
- Result data cleaning /Needs to delete false detection/
- Data cleaning for the joining
THANK YOU FOR YOUR CONSIDERATIONS!

Summary

✓ THE MODEL DETECTED GERS SUCCESSFULLY, HOWEVER, IT HAS SEVERAL BIASES.

✓ QUALITY OF INPUT IMAGE IS CRUCIAL AND SAS.PLANET IS PREFERABLE.

✓ ESTIMATION OF THE REALISTIC INDICATOR FOR NATIONAL LEVEL IS FEASIBLE, HOWEVER, MORE TIME NEEDED.

✓ BETTER TO UTILIZE COMBINATION OF SOFTWARES SINCE EACH OF THEM CONVENIENT WITH DIFFERENT FUNCTIONS.
АНХААРАЛ ХАНДУУЛСАНД БАЯРЛАЛААА