TECH TENSION, DATA AND GVCS

HOW THE US-CHINA TECH WAR CAN AFFECT TECHNOLOGY AND GVCS

Gloria O. Pasadilla, PhD Partner and Director Leadership Design Studio, Singapore

PRESENTATION OUTLINE

- The context: Why compete in technology?
 - Race for supremacy in industries of the future
 - Race for patents and standards
 - The US-China tech tension in terms of policy measures
- Data policies, GVC and trade
- Impact on GVC and trade

- References
- GVCs in the Post-Pandemic New Normal (Thematic Chapter of AMRO Regional Economic Outlook 2021)
- https://www.amro-asia.org/wpcontent/uploads/2021/04/AMRO-AREO-2021 C2-rev.pdf
- Next Generation Non-tariff Measures:
 Emerging Data Policies and Barriers to Digital
 Trade
- https://www.unescap.org/sites/default/d8files/knowledgeproducts/AWP%20187%20%282020.01.24%29.pdf

CONTEXT: PERVASIVE USE OF TECHNOLOGIES IN THE VALUE CHAIN, FROM PRODUCTION TO TRADE TO FINANCE

Technology in Trade and Supply Chain Finance

Manufacturing

3D printing, robotics, automation, IoT

Pre-export

Transport/
Shipping

Export destination

- Smart contracts
- E-commerce
- Cloud based solutions
- Big data analytics
- Artificial intelligence
- Blockchain

- Smart contracts
- Global positioning systems (GPS)
- Internet of Things
- Blockchain

- Single Window
- E-documents
- Blockchain

Examples of technology uses in the supply chain

Trade Financing

Confirming bank used by exporter

Issuing bank used by importer

- Smart contracts
- Big Data analytics
- Artificial intelligence
- Cloud-based solutions (e-docs)
- Machine learning

Banks are more conservative than Fintechs in applying technology, especially in shifting from paper transactions to e-documents

REASON FOR THE INTENSE TECHNOLOGY COMPETITION

- Modern technologies exhibit network effects
- Network effects create a 'winner-takes-most' outcome -> i.e. monopoly or oligopoly
- Huge benefits from being the "first mover" that can dominate the global standard
 - huge user base
 - obtain the 'architectural franchise'
 - Example: Ethernet became the standard protocol for the local computer network
- ☐ Cannot discount the **security aspect** of the technology competition (technology powers defense capabilities)

"...he that dominates technology, dominates the world..."

CRITICAL ROLE OF SEMICONDUCTORS IN ICT TECHNOLOGIES

First stage Integrated circuit (IC) design

EDA (Electronic design automation) software used for IC design has US intellectual property rights and subject to export control

Semiconductor Supply Chains

Second Stage
Fabrication/ chip manufacturing

Manufacturing equipment for chip manufacturing supplied by US firms;

High-end chip fabrication uses lithography technology not available in China

It takes years to develop fabrication capacity

Third Stage Assembly and testing

Labor-intensive; China making inroads
But Japan dominates materials: silicon
wafer, photoresists, essential
packaging chemical

- US is industry leader
- Germany, Japan, Netherlands, South Korea and Chinese Taipei are leaders in the semiconductor ecosystem which consists of:
 - R&D
 - Design
 - Manufacturing
 - Semiconductor manufacturing equipment
- Challenges to US leadership in semiconductor industry

Semiconductor supply chain: major chokepoints

Key players: TSMC (Chinese Taipei); SMIC, HiSilicon (Huawei) (China); Samsung (South Korea); Intel (US)

ASML (Netherlands – extreme ultraviolet lithography equipment (EUV) – for state of the art chips)

SEMICONDUCTORS MANUFACTURING CAPACITY

Chip Fab capacity (by Fab headquarter)

Chip Fab capacity (with and without export controls)

Source: Georgetown University WP

Chinese Taipei manufactures 43% of the advanced chips; China only 3%

China's capacity for advanced chips production can fall from 3% to 0.2% with the tech war

TIT-FOR-TAT TECH-RELATED TRADE AND INVESTMENT MEASURES

China

Unreliable Entity List (licensing)

Export restrictions

"Great Firewall of China"

Cross-border data transfer restrictions

United States

Licensing for exporting to Chinese firms (Entity List)

Export control of technology

Domestic regulations banning use of certain equipment

More stringent reviews of foreign investment in technology start-ups

TECH COMPETITION SHOWN IN R&D SPENDING AND INCREASINGLY IN GLOBAL STANDARD SETTING

GROSS ESTIMATED EXPENDITURES IN R&D

(PPP BILLION USD, PERCENT 2019 GDP)

SHARES IN 5G STANDARD ESSENTIAL PATENTS (SEP) (PERCENT SHARE TO TOTAL)

COMPETITION IN STANDARDS

LESSONS ON STANDARDS; GALAPAGOS SYNDROME

MAP

-home-grown security protocol for WLAN to supplant international wireless standard WiFi.

- Allegedly for national security considerations
- lack of global standard lack of seamless connections across borders and device platforms
- Many WiFi products cannot be used in China market
- Intense pressure -> China allowed alternative protocol

- Time division-synchronous code division multiple access; Chinese standard of third generation 3G mobile telecom technology

- China sought approval for it be an international standard like WCDMA and CDMA2000
- Didn't get worldwide adoption but experience of how to seek international recognition was fruitful for China

- Galapagos syndrome
- Japan's technology standards that gave local companies advantage in the local market
- Very advanced and innovative in 1980s-90s
- -But because standards were for the local market, Japanese manufacturers had difficulty exporting products globally
- Eventually left behind by other manufacturers that used global standards

DATA POLICIES ARE IMPORTANT FOR GVCS

GROWTH IN DATA-DRIVEN SERVICES

EVEN WITHIN MANUFACTURING GVCS, USE OF DATA IS PERVASIVE

R&D, Design,
Testing, Raw
materials
Input of goods and services; Assembly

Sales
marketing;
After-sales
services
monitoring

All stages of production depend on data

EXAMPLE OF DATA THAT NEED TO BE MOVED IN PRODUCTION

Control and coordination

- Employment data, market data, market prices, operations, planning, and processing, production data, production planning
- Performance monitoring, demand forecast, knowhow/training, licensing, customer data, energy/matl consumption, internal communication

Pre-production

- Market information, usage data, social media data, technical data, virtual design, test results
- Names of scientists, location data, knowhow, customer data, communication, project info

Supply chain management

- Customs data, customer data(address/names), package tracking, payments, inventory levels, transport route optimization and transport time, procurement details
- Communications, info to logistics partners, orders, sales data, production sked, performance metric

Production

- Data from sensors, instructions for robots, incl communication between robots, knowhow/training, testing final product
- Diagnostics, maintenance and repair; market data, product data, quality control, technical data

Post-sales

- Usage data, performance data, social media input, customer reactions, Diagnostics, condition monitoring, maintenance and repair incl spare part management
- data from third parties (e.g. retailers), content as part of product, storage management, "life of product", technical dat, product offer data, sales guides

Source: Kommerskollegium

Some data may be personal data

VARIOUS REGULATIONS ON CROSS-BORDER DATA FLOWS

Regulatory options

Key .

Examples

Limited transfers model

Domestic storage	Domestic processing	Government approval
Broad requirements to use domestic servers for data storage	Broad requirements to use domestic servers for data processing	• Prior approval required for data transfers
 China: certain personal data US states: government data Australia and United Kingdom: health data Russian Federation: telecommunications data 	Russian Federation: processing of personal data	• China: Cybersecurity Law

Conditional transfers model

Regulatory safeguards

- Consent
- Adequacy findings
- Private sector assessment (for example, codes of conduct, binding corporate rules, contractual arrangements)
- European Union: General Data Protection Regulation

Open transfers model

Private standards

- No a priori mandatory requirements
- Private sector accountability based on voluntary standards
- US federal rules
- APEC Privacy Framework

Data closure

Data openness

Sources: WDR 2021 team, based on Casalini and López González (2019); Cory (2017).

EFFECTS OF DATA RULES ON GVCS

Effect of forced localization

Effect of restrictions on CB data transfers

Source: Kommerskollegium

WHO ARE THE WINNERS AND LOSERS IN THE TECH WAR

acquisition

sufficiency

chains

Example: In 5G

Push for open-source development of software and technology that allow 5G equipment to communicate

O-RAN

Open Radio Access Network standard

- Huawei not part - has own standard

WILL TECHNOLOGY BIFURCATION RESULT FROM THE TECH TENSIONS?

Tech bifurcation => dual or multiple standards in operation; lack of interoperability of devices; no seamless connections

Tech bifurcation can result in the short-run

Effect of bifurcated technology

...BUT TECHNOLOGY BIFURCATION MAY NOT BE THE LONG RUN RESULT

Competition and Network effect will create a winner-takes-most outcome

Huge benefits from "first mover" that can dominate the global standard Technology itself may solve the dual or multiple standards over time

TECH TENSION, DATA AND GVCS

HOW THE US-CHINA TECH WAR CAN AFFECT TECHNOLOGY AND GVCS

Gloria O. Pasadilla, PhD Partner and Director Leadership Design Studio, Singapore