Perspective on Energy Transition and Regional Cooperation

Joong Yeop Lee
Programme Officer, Country Engagement and Partnerships

Expert Group Meeting: Vienna Programme of Action Subregional Review in North and Central Asia
8 June 2023
RE, efficiency and electrification dominate energy transition

- Reducing emissions by 2050 through six technological avenues
- 90% of all decarbonisation in 2050 will involve Renewable Energy through direct supply of low-cost power, efficiency, electrification, bioenergy and green H2.
Global WA-LCOE from utility-scale solar PV projects fell by 85% between 2010-2020, CSP by 68%; on-shore wind by 56%, and off-shore wind by 48%.
Record 295GW growth in renewables achieved in 2022
The energy transition is far from being on track to 1.5°C

- **Significant acceleration** is needed across energy technologies, from deeper end-use electrification, to **direct renewable use**, **energy efficiency** and **infrastructure** additions.
- The **lack of progress** will increase future **investment needs** and the **costs of worsening climate change effects**.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Recent years</th>
<th>2030</th>
<th>2050</th>
<th>Progress (Off / on track)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENEWABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewable 27th power capacity additions</td>
<td>295 GW/yr</td>
<td>975 GW/yr</td>
<td>1066 GW/yr</td>
<td></td>
</tr>
<tr>
<td>Share of renewables in final energy consumption</td>
<td>19%</td>
<td>34%</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td>Energy intensity improvement rate</td>
<td>0.6 %/yr</td>
<td>3.5 %/yr</td>
<td>2.9 %/yr</td>
<td></td>
</tr>
<tr>
<td>ENERGY EFFICIENCY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of direct electricity in final energy consumption</td>
<td>22%</td>
<td>29%</td>
<td>51%</td>
<td></td>
</tr>
<tr>
<td>ELECTRIFICATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrifier capacity</td>
<td>0.5 GW</td>
<td>233 GW</td>
<td>5722 GW</td>
<td></td>
</tr>
<tr>
<td>CCS/CCU to abate emissions in industry</td>
<td>0.01 GtCO2 captured/yr</td>
<td>1.0 GtCO2 captured/yr</td>
<td>3.0 GtCO2 captured/yr</td>
<td></td>
</tr>
</tbody>
</table>
Electricity becomes the main energy carrier in 2050

- Total final energy consumption decrease by 15% from 2020 to 2050
- Renewable energy deployment, improvements in energy efficiency and the electrification of end-use sectors contribute to this shift
- More significant roles of modern biomass (16%) and hydrogen (14%) in 2050
- 94% of hydrogen consumption in 2050 from renewables
Power generation needs to more than triple by 2050

2020

Gross electricity generation (PWh)

- Fossil fuels: 62%
- Nuclear: 10%
- Renewables: 28%
- Total: 27.0 PWh

2050: Where we need to be (1.5-S)

Gross electricity generation (PWh)

- Fossil fuels: 91%
- Nuclear: 5%
- Renewables: 4%
- Total: 89.8 PWh
The way forward – 3 priority pillars of Energy Transition

PHYSICAL INFRASTRUCTURE
- Forward-looking planning
- Invest in grids and trade routes on land and sea
- Facilitate national, regional and global strategies for new supply-demand dynamics and promote equity and inclusion.

POLICY AND REGULATION
- Design of policy and regulatory frameworks
- These need to enable different levels of the energy transition, from local to global, and account for new supply-demand dynamics.

INSTITUTIONS AND SKILLED WORKFORCE
- Capacity among institutions, communities and individuals to acquire the requisite skills, knowledge and expertise
- Develop a skilled workforce
Deployment of RE requires a significant amount of critical materials.

Installed Capacity by 2050

Wind
- 2021: Onshore: 769 GW, Offshore: 56 GW
- 2050: Onshore: 6,170 GW, Offshore: 2,002 GW

Solar
- 2021: 481 GW
- 2050: 14,036 GW

EV
- 2021: 6.8 mln
- 2050: 1.7 bln
Long-term Supply is Not a Show-Stopper for the Energy Transition

- **Challenges exist and vary by material**
 - Time needed to ramp-up supply
 - Lack of geographical diversification
 - Lack of ESG practices across the supply chain
 - Lack of precise and transparent assessment of needs and activities to date

- **Solutions already exist and their mix is needed**
 - Innovation in chemistries helps reduce or eliminating material demand; in mining, processing and recycling, advance efficiency and sustainability
 - Circularity concept enables material and product reuse and recycling
 - Need for a third-party ESG verification
IRENA’s Energy Transition Support

IRENA’s engagement with Parties to the Paris Agreement

Input to NDC already provided

Implementation of support

Work plan development

Scoping

Latin America and the Caribbean
- Antigua and Barbuda
- Belize
- Cuba
- Dominican Republic
- Ecuador
- El Salvador
- Grenada
- Nicaragua
- Paraguay
- Saint Kitts and Nevis
- Uruguay

Europe
- Armenia
- Austria
- Belgium
- Bulgaria
- Croatia
- Cyprus
- Czech Republic
- Denmark
- Estonia
- Finland
- France
- Germany
- Greece
- Hungary
- Iceland
- Ireland
- Italy
- Latvia
- Lithuania
- Luxembourg
- Malta
- Monaco
- Montenegro
- Netherlands
- Norway
- Poland
- Portugal
- Romania
- Russia
- San Marino
- Serbia
- Slovakia
- Slovenia
- Spain
- Sweden
- Switzerland
- Turkey

Asia and the Pacific
- Afghanistan
- Bangladesh
- Bhutan
- Brunei Darussalam
- Cambodia
- China
- Cook Islands
- Cuba
- Democratic People’s Republic of Korea
- Fiji
- France (including New Caledonia)
- Georgia
- Germany
- Greece
- India
- Indonesia
- Iran
- Iraq
- Japan
- Korea
- Kuwait
- Laos
- Malaysia
- Mongolia
- Myanmar
- Nepal
- New Zealand
- Nicaragua
- Niue
- Pakistan
- Papua New Guinea
- Philippines
- Qatar
- Republic of Korea
- Robert
- Russian Federation
- Samoa
- Saudi Arabia
- Singapore
- Solomon Islands
- South Africa
- Sri Lanka
- Syria
- Taiwan
- Thailand
- Tonga
- United Arab Emirates
- United States
- Vietnam

Africa
- Angola
- Benin
- Botswana
- Burkina Faso
- Burundi
- Cameroon
- Cape Verde
- Central African Republic
- Chad
- Comoros
- Democratic Republic of the Congo
- Egypt
- Equatorial Guinea
- Eritrea
- Ethiopia
- Gabon
- Gambia
- Ghana
- Guinea
- Guinea-Bissau
- Haiti
- Ivory Coast
- Jamaica
- Kenya
- Lesotho
- Libya
- Madagascar
- Malawi
- Mali
- Mauritania
- Mauritius
- Morocco
- Mozambique
- Namibia
- Niger
- Nigeria
- Sierra Leone
- Somalia
- South Africa
- Sudan
- Swaziland
- Tanzania
- Togo
- Tunisia
- Uganda
- United Arab Emirates
- United Kingdom
- United States
- United States Virgin Islands
- Uruguay
- Zambia
- Zimbabwe

Disclaimer: This map is provided for illustrative purposes only. Boundaries and names shown on this map do not imply any official endorsement or acceptance by IRENA.
IRENA’s Engagement with Central Asia

- **Webinar on Advancing the Energy Transition in Central Asia through NDCs and LTS** (2021, with UK COP26 Presidency)

- Capacity Building for Renewable Energy Targets and **Renewables Readiness Assessment** for Kyrgyzstan (2022)

- Strengthening Bioenergy Data of Kazakhstan for Monitoring SDGs and NDCs (2023)
IRENA’s Engagement with Central Asia

• Scaling Up Renewables in Landlocked Developing Countries (LLDCs) (2022)
 - Ambitious renewables targets consistent with NDCs and LTS offers a strong business case for investment.

• 3 Solar Projects under the ETAF in Uzbekistan (2023)
 - Masdar and the AIIB have agreed to commit capital.

• SolarCity Simulator for Tashkent (ongoing, with UNDP)
 - A web-based platform for planning of rooftop PV
THANK YOU!