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INTRODUCTION 

Given the rise of motorized transport throughout the world in recent years, road accidents analysis 
and prevention are now a priority challenge for policy makers. In fact, in 2010 the United Nations (UN) 
General Assembly proclaimed the 2011-2020 period as “the Decade of Action for Road Safety” 
(Resolution 64/255), with the aim of stabilizing and then reducing the forecasted levels of road fatalities 
on a global scale (United Nations, 2010). To achieve this goal, the World Health Organization and the 
United Nations regional commissions, in cooperation with the United Nations Road Safety Collaboration 
and other stakeholders, have been asked to prepare a Plan of Action for the Decade as a guiding 
document to support the implementation of its ambitious objectives, fostering road safety management 
expertise, improving the safety levels of transport networks and vehicles, influencing the behaviour of road 
users accordingly and enhancing post-crash response to name few. In addition, Resolution 64/255 invited 
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ABSTRACT 
 

This paper illustrates the results of the research conducted under the MAIA (Models and 
methods for collision prediction and Impact Assessment) project to develop a web-based platform 
for performing road safety simulation and assessing crash-related externalities. 

 
After outlining the cutting-edge of accident prediction science as well as the state of the art 

of web-based road safety simulation, the paper describes an application in the United Kingdom, 
resulting in the development of the novel MAIA toolkit. This uses a set of three collision prediction 
models deriving from the comparison of a number of statistical parametric and machine learning 
methods (count data, ordered multinomial and artificial neural network models), along with an 
impact assessment tool. The MAIA prediction models estimate the frequency of road collisions and 
their casualty effects: number and severity of injuries; whilst the MAIA impact assessment tool has 
been designed and tested to estimate collision impacts (travel times, costs and emissions). 

 
The prediction models adopt a statistical parametric framework, which has proved to 

perform better than non-parametric methods and have been validated on a national as well as 
subnational (cluster of UK districts) level. 

 
In the Asia-Pacific region, hundreds of thousands of people die every year due to road 

accidents. In line with the United Nations “Decade of Action for Road Safety 2011-2020” Resolution, 
a web regional network has been created for the exchange of road safety best practices within the 
Asia-Pacific area. The idea behind this paper is to provide a scientific and robust set of tools, which 
potentially could be integrated through a web-based application to estimate the parameters of context-
specific accident prediction models and support road safety decision-making at different scales. 
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the World Health Organization and the United Nations regional commissions to coordinate regular 
monitoring, within the framework of the United Nations Road Safety Collaboration, of global progress 
towards meeting the targets identified in the plan of action through global status reports on road safety 
and other appropriate monitoring tools (World Health Organization, 2010).  

 
Accident prediction modelling can provide a solid basis for road safety decision-making, in line 

with a culture of scientific evidence-based planning: accident prediction models can help public 
authorities to identify the actual sources of road hazard and estimate the potential effects of policies 
and management actions, in terms of crash frequency reduction and severity mitigation.  

 
A recent study (Yannis et al., 2016) points out that most organizations involved in road accident 

prevention – in Europe, the Asia-Pacific region and the United States of America – do not use prediction 
models for road safety decision-making on a regular basis: in more detail, although about 60 per cent 
of the organizations interviewed (national road authorities, managing companies, academia/research 
institutes and highway consultants) usually derive their choices or proposals from a comparative 
analysis of alternative road safety measures, they rarely or never employ accident prediction models 
during the assessment process. This is probably due also to the shortage of easy-to-use applications 
and toolkits to support policy makers and practitioners in road safety promotion by the use of accurate 
predictive models. In fact, as the following section shows in detail, from the technological point of view, 
the state of the art mainly consists of simple web databases of effective safety measures (Yannis et al., 
2016), which raises a serious gap hindering the global advancement of road safety levels. 

 
This paper describes the early results of an ongoing research that, in an attempt to address the 

above gap, proposes a web-based platform (MAIA - Models and methods for collision prediction and 
Impact Assessment - toolkit) for road safety policy/measure simulation at both national and local scale. 
The core of this web application will consist of models to predict the main dimensions of road collision 
phenomena (crash frequency, number of casualties and severity) and to assess impacts of collisions in 
terms of non-casualty effects, such as congestion, travel delays and emissions. 

 
In its current form, the MAIA toolkit incorporates only models for accident prediction, which 

derive from a complex development, validation and selection process: more than 300 models from both 
the microeconometrics domain and the machine learning area have been evaluated. 

 
For the specific case of the Asia-Pacific region, the current availability of a regional web-based 

network to facilitate the regular exchange of road safety best practices amongst government officials 
and practitioners (Asia Pacific Road Safety Network) makes this research particularly considerable for 
the region’s stakeholders. In fact, this network could be the first step of a process to harmonize and 
share road safety data within the area, thus creating the basis for the development of a system of 
accident prediction models to be integrated into the regional web network as a MAIA-like application. 
Every collision aspect (number of casualties, severity, etc.) could be modelled with a clustering 
approach, which means building several cluster-specific simulation tools for the same aspect, each 
cluster consisting of data from similar countries/areas. This might yield the advantage of increasing 
significantly the information employed to model every specific crash dimension, in terms of sample size 
and wealth of predictors. 

 
The paper, in section 2, explores the scientific literature about road accident modelling, with 

regard to crash frequency as well as casualty and traffic congestion effects; furthermore, section 2 
outlines the main web-based decision support systems for road safety decision-making. Section 3 
illustrates the novel MAIA toolkit and is followed by the description of the underlying accident modelling 
process in section 4 and the travel time impact estimation tool in section 5. Finally, conclusions are 
drawn and the future steps of the research are pointed out in section 6. 

 

I. LITERATURE REVIEW 
 

This section outlines the scientific literature on road accident and related external costs 
modelling and ends with the description of the most advanced web toolkits to support road safety policy-
making and management. Exploring the relevant state of the art has revealed that, so far, safety 
scientists have mainly employed, as road accident predictors, transport variables such as traffic flows 
and speed, along with road geometry parameters. However, a more comprehensive approach is 
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emerging and may spread in the near future for the increasing availability of road operation data1, 
special conditions at the crash location (like, for instance, roadworks), carriageway hazards (like, for 
example, the presence of vehicle load on road), user behaviour (such as driving under the alcohol 
influence), weather conditions, land use in the area around the accident scene, etc. 

 
The accident prediction models resulting from the research illustrated in this paper, instead, 

extends the set of explanatory variables far beyond the traditional one, so as to include many of the 
above-mentioned regressor types. 

 
Moreover, unlike the MAIA toolkit, in general, the existing web-based road safety decision 

support systems do not use complex predictive models and are at most complementary to external 
accident models developed as single regressive equations for standard site configurations. In such 
cases, the web app suggests crash modification factors to adjust the crash frequency estimated for 
baseline conditions with external models, so as to take into account the real problem’s peculiarities 
(Yannis et al., 2016). This is the reason why the MAIA platform, conceived as a comprehensive 
simulation toolkit for road safety policy and management support, represents an advancement of the 
current state of the art. 

 

A. Accident prediction models 
 
In general, road accident prediction models are used to investigate the association between 

the likelihood of a certain level of crash frequency or severity and a set of potential explanatory 
variables, so as to elicit guidelines for public authorities to prevent collisions and alleviate their effects. 
So far, researchers in the field have explored a number of traditional and novel statistical methods to 
analyze and forecast road accidents, with particular regard to microeconometrics and machine learning 
models. However, they have mainly focused on transport predictors, such as traffic flows and speed, 
along with road design variables. 

 
As to the application of econometric models, often the variable of interest it is of count nature 

(e.g. number of collisions, number of casualties, etc.), which requires the use of specific models of count 
data (nonlinear methods). The output is usually a positive probability function (e.g. probability of 
observing one, two, … casualties in a single crash). This means that the number of events to forecast 
(e.g. likely number of casualties per crash) is estimated as the average of a random variable.  

 
To cite just one important example from the relevant literature, consider the RIPCORD-

iSEREST research project, whose aim was promoting best practices in road accident forecasting 
according to the state of the art (Reurings et al., 2005). Based on a thorough investigation into the 
accident modelling science, generalized linear models using Poisson or negative binomial probability 
distributions were proposed as effective prediction tools. Also, the specific dimension of road crash 
severity has been investigated diffusely with statistical parametric approaches. In this case, the variable 
of interest can take one of several mutually exclusive outcomes (e.g. slight injury or severe injury or 
fatality) and, therefore, an appropriate and widely used prediction method is logistic regression 
(Cameron and Trivedi, 2005; Menard, 1995). An interesting example is the study by Bedard et al. 
(2002), who employed multivariate logistic regression to analyze crash severity and discovered that 
female drivers drinking, not using seatbelts and travelling at higher speeds increase the likelihood of 
fatal accidents. 

 
Over the last years, various safety scientists have analyzed road collision phenomena by 

nonparametric methods, with particular regard to the application of machine learning to accident 
severity classification. In general, machine learning is employed to extract patterns from big datasets 
and build predictive models, without the need of assuming a specific mathematical form for the 
relationship between the variable of interest and its predictors.  

 
The classification and regression decision tree (CART) is one of the most accredited machine 

learning methods in accidentology. An interesting example can be found in the study by Kashani and 

                                                           

1 As stated in Yannis et al., 2016, “road operation data are a little less common than road design data” and, when collected, in 

general, “are also not publicly available”. 
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Mohaymany (2011), who applied the CART approach to investigate rural accidents in Iran and found 
out that forbidden overtakes and not using seat belts are the most influential factors of collision severity. 

 
Another notable nonparametric approach in accident severity research is the artificial neural 

network (ANN), as demonstrated in the work by Sohn and Shin (2001), which compares the ANN 
paradigm to the CART and logistic regression methods for road crash severity modelling in Korea. They 
showed that classification accuracy does not differ significantly across the three models and protective 
devices (seat belts and safety helmets) are the most determining predictors of accident severity. 

 

B. Assessment of accident-related congestion costs 
 
Estimating the cost of road collisions has been an active topic of discussion and has been 

studied quite thoroughly during the past few decades (Wijnen, 2017). One of the most thorough studies 
retrieved was developed by the European COST313 project (Alfaro et al., 1994). This project proposed 
guidelines regarding the cost components that should be included as well as the methods to estimate 
them. Although the externality of congestion due to road collisions is mentioned, unfortunately no 
relevant estimation methodology is presented. 

 
Nonetheless, only a few studies trying to explicitly quantify the cost of congestion due to road 

collisions could be retrieved (Chen et al., 2016; BITRE, 2009; Dowling et al., 2004; and Hallenbeck et 
al., 2003). The most notable is the one conducted by the Bureau of Infrastructure, Transport and 
Regional Economics of Australia (BITRE 2009). In this study, a deterministic queuing model was used 
to estimate delays due to crashes. These queuing models assume that vehicles move uninterruptedly 
through a bottleneck up to a certain capacity. If the number of vehicles (flow) exceeds the capacity, 
then queues start to build-up. Making assumptions regarding the capacity of all links in the network, the 
average flow on these links depending on the time of the day, the value of time of the affected road users, 
the effect of crash severity in terms of delay and the response time of authorities, they managed to 
estimate the cost of congestion due to road collisions between $500 million and $1.76 billion. This wide 
range is explained by the significant number of assumptions made to come up to this estimate. The 
congestion cost percent value had been estimated to be around 10 per cent of the overall accident cost 
in an earlier study by the Bureau of Transport Economics in Australia (BITRE 2000). Few other similar but 
more simplified approaches were also retrieved (de Leur et al. 2010; Scottish Natural Heritage 2011). 

 
The key point from all the relevant studies to the estimation of road crash-related delay costs 

is that, so far, they rely on simplistic assumptions regarding the network conditions (flows on links) and 
the actual delay caused by accidents, thus their results can be very informative but not entirely accurate. 

 

C. State of the art of web-based road safety decision-making support 
 

Exploring the pertinent literature led to find out four noteworthy web applications in the road 
safety field: the Federal Highway Administration CMF Clearinghouse databank (Gross, 2010; Gross, 
2011; Yannis et al., 2016), the AustRoads Road Safety Engineering database (Jurewicz, 2010; Yannis 
et al., 2016), the iRAP Road Safety database (Yannis et al., 2016) and a recent crash risk prediction 
map from the Indiana State Police (Indiana State Police, 2016). 

 
The first is directly related to the Highway Safety Manual (HSM), probably the most important guide 

for accident forecasting (AASHTO, 2010; AASHTO, 2014). The HSM provides predictive methods to 
estimate the crash frequency (by severity or collision type) of a network, facility or specific spot. The 
estimations are obtained with simple regression models developed for a set of base sites and named safety 
performance functions (SPFs). The SPFs depend typically upon only a few variables, mainly average daily 
traffic volumes and some roadway characteristics. The prediction performed by a safety performance 
function is to be adjusted if the actual features of the considered site differ from the base conditions of the 
model. To do this, crash modification factors (CMFs) are employed; these are particularly useful to estimate 
the effectiveness of safety measures. A number of CMFs are included in the HSM, but many others are 
provided by complementary guides and web-based platforms like the Federal Highway Administration CMF 
Clearinghouse databank, funded by the United States of America Department of Transportation. The CMFs 
provided by this platform are categorized on the basis of the site characteristics (area type, number of lanes 
and traffic volume) and the class of collision (angle crash, run-off-road collision, etc.). 
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The AustRoads Road Safety Engineering databank derive from extensive investigation into the 
effectiveness of several tens of road safety treatments in Australia and New Zealand. It offers transport 
planners the possibility of analysing accident phenomena by three criteria: crash type (head-on, rear-end, 
…), safety deficiency (road lighting inadequate, unclear priority, …) and road user (motorcyclists, 
pedestrians, …). Once a specific criterion is chosen, the related collision phenomena are illustrated, along 
with relevant engineering and non-engineering countermeasures. Furthermore, each treatment type is 
hyperlinked to a more detailed description including costs, benefits, implementations issues, technical 
references and a general measure of effectiveness in terms of crash frequency reduction percentage. 

 

The iRAP Road Safety databank, through ViDA (iRAP online software) allows to access content 

including mapping and tables of results which have been built from road inspections and assembled 
from surveys of many kinds as a result of the collaboration between the International Road Assessment 
Programme (iRAP), the Global Transport Knowledge Partnership and the World Bank Global Road 
Safety Facility, is very similar to the AustRoads one, even though the former provides less precise 
measures of treatment performance. In fact, the effectiveness of each proposed treatment is evaluated 
on a four scale system: 0-10 per cent, 10-25 per cent, 25-40 per cent, 60 per cent or more. Furthermore, 
the treatment cost (in qualitative terms) and life (in years) are indicated. 

 
In the end, in 2016, a new web application was launched by the Indiana State Police. This 

provides a Daily Crash Prediction Map showing with color-coded grids how the accident risk varies 
across the state road network during the current day. A machine learning algorithm is used for risk 
prediction on the basis of historical crash data, road conditions and characteristics, traffic volumes, 
information on residents and workers, time of year and day, etc. However, no simulation feature is 
available to assess the impact of alternative intervention scenarios on road collisions. Law enforcement 
officials can examine the map to pinpoint the hazard hot spots and, if necessary, move first responders 
to the highest risk areas. Travellers can use the map to check if their planned routes are in high risk 
zones, thus requiring re-routing or very cautious driving behaviours. 

 

II.  THE MAIA WEB APP FOR ROAD SAFETY POLICY AND MANAGEMENT SIMULATION 
 

The MAIA web platform, which was developed in the first instance for the United Kingdom, 
gives easy and secured access to road collision model-based simulation, thus facilitating research into 
policy and management scenarios to improve road safety. Potentially, it promotes accident analysis 
and related impact assessment across different spatial and time scales and can be considered as 
enabling technology for data analytics in the accidentology field. 

 
The platform is very flexible, since open source software was used for its development, which 

facilitates the successive integration of new features and off-the-shelf components. The users are 
provided with a web interface with models grouped into three categories: delay cost model for assessing 
the collision impact on travel times (under development), crash rate model to estimate crash frequency 
for a small urban or rural area, casualty and severity model to predict the number of casualties per 
accident and its severity. The users can select any of the three categories and apply the related models 
for simulation. They can also create projects, link them to a specific model, determine the set of 
predictors and estimate the model’s parameters with new observations or with subsamples of the built-
in datasets, in order to obtain updated and/or context-specific versions of the selected model (for 
example, changing from the national scale to a subnational area). 

 
The MAIA toolkit consists of three main core elements (figure 1): 
 

1) a comprehensive and multi-layered integrated database containing information on traffic volumes, 
speed, fleet composition, accidents as well as other data covering high spatial and temporal 
resolution. The web application programming interface offers the possibility of adding/removing user 
selected data to develop up-to-date and/or context-specific models. 
 

2) A central engine including the different mathematical models for both prediction and assessment 
purposes. The prediction models, in particular, are the focus of this paper. 
 

3) A visualization layer with useful options to visualize both inputs (from the database) and outputs (from 
the central engine). The visualization tool and its spatial analysis capabilities are based on GIS type tools. 
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The MAIA web interface contains several interactive buttons, each dedicated to a function. The 

main functions already included are as follows: My datasets, which connects to existing databases; 
Input, to import new data; Pre-process, which provides a table format visualization and statistical 
analysis tools; Models, to invoke the available accident prediction models and finally Projects, 
containing two sub-sections, namely PRJ-variables and Results. The latter two are better represented 
in figure 2 and 3 respectively. 

 
In particular, figure 2 displays the current toolkit version with regard to the input setting session of 

the casualty and severity model function, where the user can define a simulation scenario in terms of a 
specific combination of several roadway and context variables’ values (speed limit, junction type, main 
road class, day of week and time of day, weather conditions, presence of hazards on road, etc.). Figure 
3, instead, on the right-hand side, shows the output of a simulation with the available casualty and severity 
models. In particular, at the top, a line plot illustrates how the probability of occurrence changes as the 
number of casualties per collision increases; at the bottom, the expected number of casualties (weighted 
average of all possible amounts of casualties, with weights equal to the corresponding likelihoods) is 
presented, along with the probabilities for every possible level of accident severity (slight: at least one 
slightly injured individual; serious: at least one seriously injured person; fatal: at least one death). 

 
As mentioned previously, a powerful feature was added, that is the ability for the MAIA platform 

to estimate the accident prediction models’ coefficients on its own. A coefficient determines the impact 
magnitude of the related predictor (e.g. speed limit) on the response variable of interest (e.g. probability 
of a serious crash). Hence, the toolkit is able to generalize the mathematical framework of each model 
taking its parameters as unknown and estimate these with new data. This implies flexibility and space 
scalability: in fact, the models’ coefficients can be adjusted over time if structural changes occur (e.g. 
ways police assign injuries to serious and slight classes) and new context-specific models can be 
developed for those areas where collision phenomena follow anomalous patterns. 

 
 

Figure 1. MAIA toolkit architecture 
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Figure 2. Example of input variable setting within the MAIA platform 
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Figure 3. Example of simulation outcome within the MAIA platform 

 

 



Transport and Communications Bulletin for Asia and the Pacific  No. 88, 2018 

 9 

III. DEVELOPMENT AND SELECTION OF PREDICTION MODELS FOR THE TOOLKIT 
 

As stated above, the set of prediction models embedded in the MAIA toolkit derives from 
comparing more than 300 models from both the statistical parametric and machine learning domain. 

All main dimensions of collision modelling were covered: collision frequency at a disaggregate 
census level (Lower Layer Super Output Area or LSOA), number of casualties per collision and crash 
severity at the most disaggregate level (road link/junction). 

 
The above two modelling domains were deeply explored. In particular, within the statistics area, 

count and multinomial econometric models were tested for collision/casualty occurrence forecasting 
and severity classification, respectively. As concerns the machine learning area, for all accident analysis 
dimensions, the artificial neural network framework was employed, since it has been gaining wide 
interest as data mining tool over the last decades. Moreover, the ANNs, besides being evaluated as 
stand-alone prediction tools, were examined also as components of ensemble models. Ensembling (or 
pooling) is a novel methodology in the forecasting science and is basically a multi-model approach that 
combines the predictions of different models to improve accuracy. 

 

A. Methodological issues: problem definition, selection of predictors and data 
sources, model validation 

 
The problem under investigation was addressed with a multi-step approach (figure 4): 
 

1. Prediction of the number of road collisions per year; 
 
2. Estimation of the probability of non-injury versus injury road collisions, so as to split the predicted 

number of crashes by the type of impact (only damages for vehicles versus casualties), and forecast 
of the number of casualties per collision; 

 
3. Estimation of the probability of each severity level, so as to split the predicted number of accidents 

causing casualties among three possibilities: at least one slightly injured individual, at least one 
seriously injured person, at least one death. 

 
As to the estimation of non-injury versus injury accident risks, due to the limited amount of data 

on non-injury crashes available at present, this part of the modelling approach is still in progress and 
only the model to assess the number of casualties per collision could have been developed. 

 
Figure 4. Multi-step approach for the accident prediction problem 

 

 
 

Notes:  No Casualty: only damages for vehicles; Slight Severity: at least one slightly injured person; Serious Severity: at least 
one seriously injured person; Fatal Severity: at least one dead person. 
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In more detail, 32,844 records of collision annual frequencies (2015) for the Lower Layer Super 
Output Areas in England and related potential predictors - characterising the LSOA land use and road 
traffic, along with its population profile in terms of density, gender, age and deprivation - were analyzed 
and used for collision frequency modelling. Casualty and severity modelling, instead, was based on the 
STATS19 database, an official set of observations mainly pertaining to collision circumstances across 
the United Kingdom (specifically England and Wales). In particular, 140,056 records of 2015 STATS19 
data were employed to model casualty occurrence and accident severity as functions of the following 
set of variables: traffic; speed limit; day of week and time; main road class; junction type, if the accident 
happens at an intersection (roundabout, crossroads, etc.); presence and type of pedestrian crossing 
facility (zebra crossing, footbridge or subway, etc.); weather conditions; special conditions at site (traffic 
signal out, roadworks, etc.); carriageway hazards (vehicle load on road, previous collision at the same 
site, etc.). 

 
To evaluate the prediction accuracy of each model, an appropriate method is to analyze and 

compare the actual (from the real data) and fitted (estimated by the models) relative frequency1 for 
every observed value of the dependent variable, in relation to a time interval different to that considered 
for model estimations (Cameron and Trivedi, 2005). This means, for example, comparing the 
percentage of real cases of serious accidents, in a testing year across the UK, with that estimated by 
the relevant model and check how close the prediction is to the real life. 

 
The use of the above accuracy metric has highlighted that the statistical models - specifically, 

a collision rate negative binomial model, a casualty Poisson model and a severity ordered Probit model 
- perform better than the machine learning alternative methods, at least if compared with artificial neural 
networks when these are employed as stand-alone prediction tools. On the contrary, when the ANNs 
are combined to form ensembles of models, in very few cases, they perform a bit better. 

 
Figure 5. Validation of the model to predict the number of road crashes per LSOA 

 

 
 

  

                                                           

1 Number of cases/total of observations. 
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Figure 6. Validation of the model to predict the number of casualties per crash 
 

 
 
 

Figure 7. Validation of the model to predict the accident severity 
 

 
 

Based on a set of data different to that employed for model estimation, figures 5, 6 and 7 
illustrate the validation process outcome for each of the three selected statistical models: in detail, for 
every value of the dependent variable, the simulated relative frequency is compared against the 
observed one. A satisfactory degree of forecasting accuracy emerges from model testing. 

 

As anticipated, non-parametric and ensemble models were built and compared with the 
parametric ones, in relation to a test sub-sample (30 per cent of the 2015 database), for each of the 
accident aspects investigated (crash occurrence, number of casualties per collision and severity). In 
particular, for every value of the considered response variable, the comparison was based on the 
average percent difference between the observed relative frequency and its simulation (mean absolute 
percent error or MAPE). 

 
In the crash occurrence case, the parametric approach (negative binomial model) performed 

better at simulating the occurrence of collisions across the LSOAs, if the number of accidents is in the 
0-5 range (inclusive); whereas, beyond the 5 collisions per LSOA threshold, the non-parametric 
approach (ensemble of neural networks) turned out to be more accurate. However, overall the non-
parametric method is a bit superior: its MAPE is 4.68 per cent against a MAPE of 5.48 per cent of the 
negative binomial model. 
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As to the number of casualties per crash, the parametric approach (truncated Poisson model) 

obtained better estimates for the first four levels (1-4 injuries per accident), which anyway accounted 
for 99 per cent of the test set of observations: the truncated Poisson average MAPE was 29 per cent 
against a value of 52-53 per cent of the neural models. 

 
In the end, as regards accident severity, the parametric alternative (ordered Probit model) 

proved the best at forecasting the frequency of fatal and slight events (with MAPEs equal to, 
respectively, 48 per cent and 87 per cent of those for the best non-parametric model), while the 
frequency of serious collisions was best predicted by an ensemble of neural networks, whose mean 
absolute percent error was about 58 per cent of that calculated for the parametric model. 

 

B. Models’ strengths and weaknesses 
 

Although the statistical approach proved considerable accuracy at national level, as 
demonstrated in Figures 5-7, it revealed less effective in those contexts where road collision 
phenomena turn out to be exceptional, thus moving away from the mean behaviour on a national scale. 
In line with recent and seminal advancements in the relevant research field (Alikhani et al., 2013; 
Catalano and Galatioto, 2017; Sohn and Lee, 2003), a solution could be a self-managing model 
framework (metamodel). The proposed Metamodel will enable, for each specific combination of input 
variables, the selection of the most suitable option within a set of alternative collision prediction models, 
developed for a wide spectrum of situations. In this way, when unusual collision risk factors occur in a 
certain area, the proposed approach could select an available forecasting model that should have been 
designed for a cluster of similar areas where that set of factors is not unusual. 

 

IV. ROAD COLLISION IMPACT ASSESSMENT TOOL 
 

This section focuses on the description of a novel and more accurate impact assessment 
method to evaluate road collision-associated impacts in terms of travel time delays. The analysis was 
based on data about traffic volumes and speed, as well as road collision and street work temporal and 
spatial information. In more detail, the data employed derive from several sources: MIDAS (Traffic 
volumes and speed on the primary road network), ITN OS (road and infrastructure GIS layers), 
STATS19 (national database of injury road accidents) and Highways England (primary road injury and 
non-injury road accidents). 

 
The new method can provide an accurate assessment of the delay, as total or individual vehicle 

time delay due to road collisions. Furthermore, it was developed to be highly transferable, with a view to 
making it reusable also for other types of disruption events, such as street works and breakdowns. 

 
The development process was based on two initial phases: a temporal analysis stage to 

examine the time series of traffic data (speed, flow, etc.) and identify typical profiles and anomalies in 
the traffic behaviour (outliers), to be compared at a 15 minute resolution; a spatial analysis step to 
reconcile the output from site-specific on street traffic sensors (MIDAS) with the national Integrated 
Transport Network (ITN) link-based dataset. This resulted in a coherent and as much continuous as 
possible network with links associated with traffic data. 

 
Then the available information on road collisions (from STATS19 and Highways England, which 

provides also non-injury collision data) was used to estimate the impact in terms of travel time delay 
due to individual events. It is important to note that, since the temporal analysis phase has identified 
anomalies (outliers) independently of the relative causes, this method can provide, as a by-product, the 
total impact in terms of delay from non-recurrent congestion on the monitored transport network. 

 
The assessment was performed within an appropriate radius of influence (up to 25 km from the 

site of the collision) to capture anomalies around the event and not only along the main corridor affected. 
It was also tested using a junction-to-junction (or main node-to-main node) approach, so as to guarantee 
transferability to linear events such as street works. 

The resulting impact assessment tool is currently based on Excel and the outputs of the 
analysis can be displayed and filtered by different variables. The following figure illustrates the power 
and usability of the method. 
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Figure 8. Example of the assessment tool symbology 
 

 
 

The series of symbols in Figure 8 should be exploited by the reader to identify different types of 
road accident and events. For example, the symbol  means that, in a specific time and date, an accident 
reported by the STATS19 source has occurred; while the symbol  refers to the Highways England 
dataset, in which accidents are associated to duration values: this means that the considered symbol is 
reported for every time step of 15 minutes in which the accident has potentially caused an impact. 

 

A. Analysis of road collision impact on travel time 
 

In figure 9, a road collision event is assessed using the impact analysis tool. From the symbols, 
it is clear that an accident, registered in the STATS19 database, happened in the 18:45-19:00 interval 
and caused a significant delay wave (measured in vehicle-hours), as the series of horizontal histograms 
and associated numeric values shows for a 5 km radius of influence. Observing figure 9, there does not 
seem to be any other collision reported in the previous few hours or after the last delay registered. 

 
Figure 9. Example of impact diagram for a short distance (5 km) from the collision site 

 

 
 

Figure 10 extends the impact analysis of the above accident event to a set of distance bands 
of influence (ranging from 5 km to 25 km) on a 15-minute step basis. Time savings and delays are 
calculated for an eight hour time window (from15:00 to 24:00). 
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Figure 10. Example of impact analysis for a range of distances from the collision site  
 

 
 

The impact assessment tool has also other functions allowing, for example, the analyst to quantify 
accident-related effects on travel time by direction and type of road, including “other roads” like slip roads, 
as represented in the summary of an event impact and its temporal-spatial evolution showed in figure 11. 

 
 

Figure 11. Example of impact analysis by direction and type of road 
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B. Impact assessment tool’s strengths and weaknesses 
 

The above method for impact analysis showed robustness and very promising results in 
capturing and quantifying both negative effects (delays) and benefits (savings) associated to known 
disruption events (namely road collisions reported by independent sources) as well as unknown events, 
thus giving a full picture of the impact from non-recurrent congestion. Notwithstanding, the identification 
of the temporal and spatial extent of the event (figure 11) is still subject to a degree of manual scrutiny 
and is, therefore, expected to get mostly automated in the future through the application of machine 
learning techniques. 

 
Finally, the impact assessment method described was tested mainly on the primary road 

network, with the consequence of neglecting some types of impact such as, for example, re-routing 
traffic using alternative roads outside the primary road network. This, however, is currently under 
investigation and it will probably be possible to assess and include re-routing effects by using area wide 
data (e.g. link-based speed data). 

 

CONCLUSION AND FUTURE STEPS 
 

This paper presented a set of models for road crash prediction alongside the description of an 
innovative web-based platform for road safety policy and management simulation, the MAIA (Models 
and methods for collision prediction and Impact Assessment) toolkit. In the first instance, the MAIA 
toolkit has been designed for the United Kingdom. 

 
The forecasting models incorporated into the MAIA platform cover all main dimensions of road 

collision modelling: crash frequency, casualty occurrence and severity. These models derived from 
comparing the latest developments of machine learning (non-parametric domain) to econometric 
methods (parametric domain). 

 
The modelling work has found out that the statistical parametric approach outperforms the non-

parametric one, at least if it is compared to artificial neural networks as stand-alone models. If, instead, 
these are combined with ensemble techniques, in few cases, they perform a bit better than their 
parametric counterparts. Hence, three microeconometric models - a collision rate negative binomial 
model, a casualty Poisson model and a severity ordered Probit model - were chosen to simulate the 
main dimensions of road collision phenomena, based on a comparative analysis of more than 300 
models. 

 
A powerful feature has been added to the MAIA toolkit in the late stage of the research, that is 

the ability to estimate the three above statistical models on its own. This means the possibility of 
updating models’ coefficients over time, if structural changes occur, along with space scalability. 

 
Although parametric methods proved very good performance at national level, they revealed 

less effective in those contexts where road collision phenomena follow rare patterns. 
 
The toolkit component for the assessment of collision impact on travel times showed the ability 

to measure traffic congestion effects for the primary road network (Motorways and A-type roads). 
Throughout the testing phase, the maximum distance chosen (25 km from the reported location of the 
event) performed well. 

 
In quantitative terms, it was observed that even one single fatal crash can cause delays 

equivalent to 2 months of impact from non-extreme accidents in the same section, and road collisions 
effects on the primary road network section studied accounted for up to 60 per cent of the overall non-
recurrent congestion. 

 
During the analysis, a fundamental role was played by the availability of different but 

complementary datasets (STATS19 and Highways England data, along with information on street 
works), and their integration was beneficial for the overall assessment and avoiding misinterpretation. 

 
In the end, the results achieved are of potential interest for the Asia-Pacific region, as, within 

this area, sensitivity to road safety issues has been growing significantly since a web regional network 
was created to promote the exchange of best practices and expert knowledge amongst governments 
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and practitioners. In more detail, a certain degree of harmonization in road accident data production 
within the region could be the basis for the evolution of the above web network into a road safety 
decision-making support platform. The MAIA project could be, on the one hand, a paradigm for such a 
progress, on the other hand, the starting point towards the development of the web-based road safety 
decision support concept. In fact, a system of accident prediction tools could be integrated into the Asia-
Pacific web network as a MAIA-like application, but the high variability of collision phenomena inside 
the region could lead, beyond the MAIA experience, to a forecasting model framework very effective 
even when faced with anomalous combinations of accident risk factors. 

 
Further research will explore the benefit of a clustering-based multi-model approach for the 

accurate prediction of unusual manifestations of the phenomenon (e.g. extreme collision events). 
Moreover, other potentially explanatory variables will be tested, such as specific road design attributes 
(road curvature, road width, etc.) and driver as well as vehicle-related predictors (age, driver’s gender, 
vehicle type, etc.); the authors also intend to experiment other machine learning methods as accident 
simulation tools. 
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