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Across developed and developing countries, 
Governments are increasingly using technology 
innovations that can promote inclusion and 
empowerment. These are the technologies that 
have emerged in the fourth industrial revolution, 
commonly known as industry 4.0. Industry 4.0 
includes innovations in robotics, analytics, artificial 
intelligence (AI) and cognitive technologies, 
nanotechnology, quantum computing, wearables, 
the internet of things (IoT), big data, additive 
manufacturing, and advanced materials.

Opportunities from big data
Big data refers to the computer analysis of very large 
data sets to reveal patterns, trends, and associations. 
Big data has three elements: data crumbs; the 
capacity to analyse and use these data; and the 
community of people who produce, analyse and use 
the data.164 

For disaster resilience the data crumbs can come 
from a wide variety of sources. These include satellite 
imagery, aerial imagery, videos from unmanned 
aerial vehicles (UAVs), the internet of things and 
sensor webs, airborne and terrestrial light detection 
and ranging, simulations, crowdsourcing, social 
media, mobile global positioning system (GPS) and 
call data records (CDR).165

The increasing use of these sources is illustrated in 
Figure 4-1, which shows the number of reviewed 
articles on these subjects over recent years. On 
this basis, the fastest-growing sources are satellite 
imagery, crowdsourcing, and social media.

Big data has opened up promising approaches 
for smart resilience that empowers the poor. 
Mobile phone data, for example, can provide an 
incredibly detailed view of population behaviour 
and movement in areas previously observed only 
infrequently and indirectly. Social networks like 
Twitter, Facebook and others, are already improving 
the ability of humanitarian and other organizations 
to monitor and respond to disasters. Further, these 
opportunities are clearly increasing as mobile 
phone penetration and internet access move, albeit 
slowly in the poorest countries, towards universality. 
Nevertheless, using big data is not easy. Typically, 
big data is high-volume, high-velocity, and/or high-
variety, integrating many diverse data sources and 
requiring dense infrastructure networks. It is also 
unstructured and imprecise with a lot of ‘big noise’ 
that needs to be filtered out, requiring new forms 
of computer processing and analytics to enhance 
decision-making, the discovery of insights and 
process optimization.

Big data can help in all phases of disaster 
management; filling in gaps in information flows 
in pre-response and post-disaster situations, using 
four types of analytics: descriptive, predictive, 
prescriptive and discursive (Figure 4-2).

Even the poorest countries and most excluded communities can be empowered 
by smart digital technologies that are interconnected and autonomous, and can 
communicate, analyse and use data to drive intelligent action for disaster resilience. 
Innovation for smart resilience is therefore a key pathway to empowering and including.
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Descriptive analytics

Descriptive analytics can be used to highlight risk 
and to produce situation analyses particularly 
for damage assessment and people affected. As 
indicated in Figure 4-3, the most important data 
sources for this purpose are images from satellites 
and UAVs/drones. Remote sensing provides a quick 
initial assessment when in-situ observation is not yet 
available and can guide responders to the priority 
areas to be inspected (Box 4-1 and Box 4-2).166

All recent major disasters have been covered 
by multiple satellites and drones. These smaller 
devices are more flexible than manned aircrafts 
and can cover disaster-impacted areas close-up to 
produce higher resolution images. Drones can also 
provide 3 dimensional (3D) data that provides more 
meaningful information on the situation facing 
survivors of a disaster such as the extent of damage 
to buildings, indicating collapsed roofs, rubble piles, 
and inclined facades.

FIGURE 4-3	 Data sources used for 
damage assessment, in percentage

 Source: Manzhu Yu and others, 2018.
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FIGURE 4-1	 Use of big data sources for disaster management, 2012–2018

Source: Manzhu Yu and others, 2018.
Note: Based on distribution of reviewed article by major data sources and year of publications.
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FIGURE 4-2	 Big data: four types of analytics for smart resilience

Source: ESCAP based on Data Pop Alliance Synthesis Report, 2015.
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FIGURE 4-1	 Use of big data sources for disaster management, 2012–2018

Source: Manzhu Yu and others, 2018.
Note: Based on distribution of reviewed article by major data sources and year of publications.
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BOX 4-1	 Use of big data for damage assessment in the 2018 Sulawesi 
earthquake

The World Bank response to the Sulawesi earthquake and tsunami, started with a rapid assessment 
of the damage-affected areas using the Global Rapid Post-disaster Damage Estimation methodology. 
This was the first disaster response report to produce sector-based preliminary economic loss estimates, 
based on scientific, economic and engineering data and analysis.

Based on an open loss modelling approach, it included satellite and remote sensing imagery from 
a variety of sources. Other inputs were information from early assessments, as well as social media data 
for results calibration. Spatial characteristics developed for tsunami events included inundation extent 
and ground deformation analysis.

BOX 4-1	 Pre- and post-tsunami satellite images

Source: International Disaster Charter, 2018.
Disclaimer: The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the 
United Nations. 

The main benefit was speed. Within 10–14 days of an event, stakeholders could access loss estimates 
and the spatial distribution of damage. Total economic damages were estimated at $500 million; $180 
million for the housing sector; $185 million for commercial/industrial buildings; and $165 million for 
infrastructure.a The World Bank used this to programme its support for recovery and reconstruction with 
funding of up to $1 billion for the disaster-affected areas of Lombok and Sulawesi.

a	 Deepti Samant Raja (2016).
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Disaster risk reduction can now take advantage of 
descriptive analytics and big data. Intensive use of 
descriptive analytics was a key feature of the rescue 
of the Thai junior football team trapped in a flooded 
cave underneath a mountain (Box 4-3). 

Google Earth Engine, a cloud platform is also available 
to support location-specific damage and risk 
assessment-related analysis and decision-making. 
This uses datasets gathered from satellites, and GIS 
vectors datasets, as well as social, demographic, 
weather, digital elevation models and climate 
data.167 Another example is the Open Data Cube, 
an open-source solution for accessing, managing 
and analysing large quantities of GIS data, with an 
analytical framework of data structures and tools to 
analyse gridded data sets including post-disaster 
impact assessments.168 The Australian Geoscience 
Data Cube is the Government’s open source analysis 
platform which uses the Open Data Cube initiative 
to support the descriptive analytics application.

Predictive analytics

Predictive analytics uses big data ecosystems as 
a basis for predicting both sudden and slow-onset 
disasters.

Earthquakes

A sensor web is a wireless sensor network 
architecture that uses the World Wide Web, enabling 
access to sensor networks and archived sensor 
data that can be discovered and accessed using 
standard protocols and application programming 
interfaces.169 These sensors can be embedded in 
a wide variety of objects from buildings to mobile 
phones along with the many other smart objects 
that form part of the rapidly expanding internet 
of things (IoT). Data from these sensor webs can 
be combined with satellite data and other sources 
including user-generated data that reach various 

BOX 4-2	 Impact-based forecasting and damage assessment 
for cyclone Gita

Between 10 to 13 February 2018, tropical cyclone Gita hit several countries in the Pacific, first Samoa, 
followed by Niue, Tonga, and Fiji.a The cyclone was predicted well in advance, so Governments could 
prepare for the impacts and plan countermeasures.b This involved the use of big data to estimate cyclone 
tracks and wind and rain impacts.

Tonga’s post disaster needs assessment was carried out using drones. These had the advantage over 
satellites of producing higher-resolution imagery which was important for small-area damage 
estimation.c Drone images also captured damaged buildings and infrastructure and land cover and 
enabled rapid mapping which accelerated the process of reconstruction and recovery.

Source: Pacific Disaster Center, 2018.
Disclaimer: The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the 
United Nations. 

a	 ReliefWeb (2018).
b	 Marit Virma (2018).
c	 Ibid.
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platforms in real time through social media such as 
Twitter. These data can help predict extreme events 
such as earthquakes and tsunamis (Figure 4-4).170

Sensor costs have significantly decreased over 
the last decade making dense seismological 
networks and earthquake early-warning systems 
more affordable. In high-seismic-risk areas, these 
networks can give a better understanding of the 
location, timing, causes, and impacts of earthquakes 
and tsunamis. Even so, the warning time is short. 
Seismic waves travel at around two miles per 
second; therefore, someone who lives 30 miles 
from the epicentre could only receive 15 seconds of 
warning.

Sensor webs and the IoT have enabled efficient 
earthquake early warning systems in Japan (Figure 
4-5). Zizmos, for example, uses smartphone apps to 
detect motion and serve as seismic sensors in high-
risk areas. 171,  172 This network can provide up to 90 
seconds of warning.

FIGURE 4-4	 Data sources used for 
predictive analytics, in percentage

Source: Manzhu Yu and others, 2018.
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BOX 4-3	 The use of technology in 
Thailand cave rescue: Life-saving 
operation in a challenging terrain

In June/July 2018, 12 boys went on a field trip, 
in Thailand’s Chiang Rai province, with their 
football coach and became trapped deep inside 
a cave underneath a mountain. The prevailing 
stormy weather conditions meant that flooding 
was imminent. The rescue was supported by 3D 
high-resolution satellite images, which provided 
better visualization and understanding of 
the risk scenarios, evaluation differences, and 
topographic features of the area. For instance, in 
the search for alternative access, the availability 
of real-time images helped to find openings to 
drop off survival boxes and seek any sinkholes 
for managing the water flowing into the cave 
system in order to maintain the water level. The 
rescue was supported by a variety of image 
data products in conjunction with contextual 
collateral information from multiple platforms. 

BOX 4-3	 3D-Satellite Image Map of 
Tham Luang, Khun Nam Nang Non-Forest 
Park, Chiang Rai, Thailand

Source: Geo-Informatics and Technology Development Agency 
(GISTDA), 2019.
Disclaimer: The boundaries and names shown and the designations 
used on this map do not imply official endorsement or acceptance by 
the United Nations.
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Tsunamis

Tsunamis in the ocean can be detected by the deep-
ocean assessment and reporting of tsunamis (DART) 
system which comprises a series of surface buoys linked 
with recording devices on the sea floor that detect 
pressure changes caused by tsunamis. The surface 
buoy receives information from the recorder via an 
acoustic link, and then transmits data to a satellite, for 
onward dissemination (Figure 4-6). The system detects 
earthquakes and abnormal changes in sea level and 
helps scientists decide whether an earthquake has 
triggered a tsunami.

A tsunami wave in the open ocean can travel at more 
than 800 kilometres an hour, crossing the Pacific Ocean 
in less than one day. But if it is locally generated, a ‘near 
field’ tsunami, it can hit the coast within minutes, and 
up to a few hours at most. Buoys can be installed in 
the deep ocean, but this requires using a large number, 
which is quite difficult. A second option is to install the 
buoys along the shoreline, but they would provide very 
little warning. Recent innovations suggest a third option 
that use the faster acoustic waves radiating from the 
earthquake that triggered a tsunami.173,  174

Other options are also possible. For example, taking 
advantage of the installation of many new trans-oceanic 
and regional telecommunication cable systems, a Joint 
ITU/UNESCO/WMO Task Force has been working on 
establishing a global network of smart cables equipped 
with sensors that provides real-time data for ocean 
climate monitoring and disaster mitigation, particularly 
for tsunamis. Such system can mitigate the very costly 
problem of intentional vandalism or unintentional 
damage that sea-surface buoys are prone to.

FIGURE 4-5	 IoT provides affordable earthquake early warning to communities 
in Japan

Sources: Japan Meteorological Agency, 2012; Android weather apps, 2016; Slideshare.net, 2015. 
Disclaimer: The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations. 
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FIGURE 4-6	 Tsunami warning system 
in Indonesia

 Source: Singhvi and others, 2018.
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Additionally, container ships and other commercial 
vessels can act as passive markers for vertical sea-
surface motions, and precise Global Navigation 
Satellite Systems (GNSS) positions from these ships 
can be used to detect tsunamis. High accuracy GPS 
and satellite communications can serve to create 
a dense, low-cost tsunami sensing network that, 
when connected to big data ecosystems and the 
IoT, would improve detection and predictions of 
tsunamis, especially for near-field tsunamis, where 
communities are at a heightened risk due to the 
shorter evacuation lead time available.

Tropical cyclones

Flood and cyclone forecasting uses computer 
simulations. Increasingly this involves nested 
modelling that couples hydrologic and climate/
weather models, which offer improved lead times 
and better locational accuracy (Figure 4-7). Tropical 
cyclone simulation can be based on sea surface 
temperature, ocean state, atmospheric parameters 
and retrospective seasonal prediction. These data 
can be combined with Earth observation satellite 
data on hydrologic, land cover, atmospheric and 
other ocean related data. Social media can then send 
early warning messages to communities at risk.

The China Meteorological Administration (CMA), 
for example, uses big data for gridded, smart and 
impact-based typhoon forecasting.175 Impact-based 
typhoon forecasts and warnings help to pinpoint, 
with far more location and timing accuracy, the 
community at risk. This has improved evacuation 
exercises — number of people and timing of 
evacuation. Evacuations that occur just before 
a typhoon makes landfall helps increase compliance, 
as it minimizes livelihood disruption. Exposed 
economic assets can be protected through impact-
based forecasting that enables risk-informed, spatial 
land use planning. As a result, there has been 
a significant decrease in casualties, even for super-
typhoons (Box 4-4), and a reduction in disaster 
losses, as a proportion of GDP, as shown in the case 
of China in (Figure 4-8).176

Floods

There has not been comparable advances in flood 
forecasting. Floods, especially recurring ones, 
therefore continue to be a driver of immiseration 
and disempowerment. Floods are complex because 
of their multiple cascading impacts, particularly in 
the case of flash floods. Forecasting can, however, 

FIGURE 4-8	 Typhoon casualties 
and losses in China, 1987–2018

Source: CMA, 2018.

BIG DATA
APPLICATION

BIG DATA
APPLICATION

PE
R

C
EN

TA
G

E

U
N

IT
= 

R
M

B
 1

0
0

 M
IL

LI
O

N

TY
PH

O
O

N
 IN

D
U

C
ED

 C
A

SU
A

LT
IE

S,
U

N
IT

=P
ER

SO
N

FIGURE 4-7	 Data sources used for 
predictive analysis that is effective 
in cyclone and flood forecasting, 
in percentage

Source: Manzhu Yu and others, 2018.
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also benefit from big data, by overlapping real-
time data onto maps of flood hazards, exposure 
and vulnerability. In this case, data from multiple 
platforms can be used as the basis for a precipitation 
estimate for a couple of hours in conjunction 
with a forecast for the few days (Box 4-5). A web-
geographic information system (GIS) platform, for 
example, can aggregate data in space and time and 
build scenarios of risk and damage.177

A recent innovation in climate modelling is the use 
of an ensemble prediction system (EPS). Instead of 
offering a single forecast, an EPS offers a group or 
ensemble of forecasts indicating a range of possible 
outcomes (Figure 4-9). EPS is particularly useful in 
transboundary river-basins where it is difficult to 
get hydrologic data. It is also possible to incorporate 
rainfall predictions from multiple weather centres, 
as well as rainfall and river observations from many 
platforms and institutions. Some stations offer 
forecasts for up to 16 days in advance.178

The experience of EPS for 2018 flood forecasting 
for Sri Lanka was a mixed bag of success. While it 
captured the intensity of torrential rain two days 

in advance,the forecast was not precise in its exact 
location (Figure 4-10).179 The location accuracy can 
be improved not only with quality of downscaling 
ensembles but with densification of data network 
and putting in place an appropriate big data 
ecosystem.

Prescriptive analytics

Prescriptive analytics goes beyond description and 
inferences to incorporate pro-poor policy action. 
For example, policymakers can create a series of 
policy scenarios and run predictive analyses on the 
likely outcomes. In doing this, they must take into 
account complex interactions between climate, 
social and ecological systems to develop scenarios 
and trajectories that combine actions for pro-
poor adaptation and mitigation. They can indicate 
pathways at four levels; risky (taking no action), 
passive (not backed by vulnerability responsive 
policy actions and budget), active (backed by 
vulnerability responsive policy actions and budget), 
and full (institutionalized responses supported by 
both short- and long-term policy actions).

BOX 4-4	 Big data makes a difference: a tale of two typhoons

In August 2006, super typhoon Saomeo hit Zhejiang province killing 483 people, displacing 1.8 million 
and causing losses of $2.5 billion. In contrast, in September 2018 super typhoon Mangkhut hit Guangdong 
Province killing just 16 people, displacing 1.5 million and causing direct losses of $2.1 billion.a, b The 
substantial reductions in mortalities and economic losses were attributed to big data applications that, 
by 2018, had enabled impact-based forecasting and risk-informed early warning.

Between 2006 and 2018 there had been substantial improvements in observational capacities of orbiting 
earth observation satellites, which resulted in more accurate and higher resolution data.c Typhoon 
Mangkhut was tracked and monitored more frequently by eight dedicated satellites as opposed to the 
three for Saomeo in 2006. Further, Mangkhut’s track was forecast using cone areas indicating possible 
dynamic risk zones, providing a more precise location of possible impacted areas.d

Source: China Meteorological Administration, 2019. 
Disclaimer: The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the 
United Nations.
a	 China Meteorological Administration (2019).
b	 Organisation for Economic Co-operation and Development (OECD) (2019).
c	 Ibid.
d	 Ibid.
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FIGURE 4-9	 Ensemble prediction system: nested modelling for flood forecasting 
with longer lead-time

Source: Tomoki Ushiyama, ICHARM, 2019.
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BOX 4-5	 Big data used for flood forecasting in Japan

The Japan Meteorological Agency (JMA) uses a quantitative precipitation estimation (QPE) and 
a quantitative precipitation forecast (QPF) as warning criteria to identify risk levels of flood inundations 
and landslides in certain locations.a

Based on QPE and QPF, potential risk indices have been developed for landslides and flood inundations. 
These indices serve as warning criteria for heavy rain, inundation and landslides. The model helps the 
Public Weather Service issue severe weather warnings. The JMA has built a solid disaster database to 
determine proper warning criteria.

Source: Japan Meteorological Agency, 2019.
Disclaimer: The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the 
United Nations. 

  a	 Japan Meteorological Agency (2019).
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These scenarios can be seen as iterative, continually 
evolving processes for managing change within 
complex climate-sensitive systems. In Kazakhstan, 
for example, climate, geo-spatial and socioeconomic 
data have been used to create a flood vulnerability 
index that indicates the outcomes of different levels 
of policy action.180

Running policy scenarios can be considered a top-
down approach. Another prescriptive application 
which is more bottom-up and empowering is 
behaviour ‘nudging’. This might involve, for example, 
collecting from individuals their data on energy 
consumption, or their exposure to health risks, as 
a basis for providing them with personalized reports 
that might nudge them in a positive direction.

Another prescriptive use of big data is for index-
based flood insurance (IBFI). In South Asia, IBFI 
systems use satellite data and computer-based flood 
models to assess the location, depth and duration 
of flooding and indicate when and where flooding 
reaches the threshold at which damage is severe 
enough to warrant compensation.181 This simplifies 
decision-making and speeds up the delivery of 
insurance payouts which has helped alleviate the 
asymmetric impacts on poor farmers (Figure 4-11). 
IBFI has successfully been piloted in 2017/18 in 
Bihar, India.182

Discursive analytics

Discursive analytics involves using data to empower 
communities at risk. Data sources include satellite 
and aerial imagery combined with user-generated 
data. During major disasters, a useful way of following 
people is to use the call records of mobile phones 
which are regularly collected by phone companies 
for monthly billing. The United Nations Global Pulse 
initiative has shown several cases where mobile 
phone location data have been used to understand 
people’s response during major disasters.183

Discursive analytics can also make use of mobile 
phones to receive messages and alerts (Box 4-6). 
These activities are more efficient however when 
embedded alongside productive and prescriptive 
analytics into an overall systems approach.

Counting the excluded
Building disaster resilience for the most vulnerable 
communities requires good baseline data 
disaggregated by gender, age, and disabilities. Such 
data are often scarce or completely missing, since 
official data collection systems often exclude the 
most vulnerable people who are hardest to reach.

International household surveys can omit these 
people either by accident or by design. The 
Demographic and Health Surveys (DHS) and the 
Multiple Indicator Cluster Surveys, for example, do 

FIGURE 4-10	 Predicted and actual rainfall in Sri Lanka, 24 May 2019

Source: Tomoki Ushiyama, ICHARM, 2019.
Disclaimer: The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations.
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not cover people who are homeless, or who sleep in 
shops or workplaces not enumerated as dwellings. 
Nor do they cover mobile, nomadic or pastoralist 
populations or people in refugee camps. Moreover, 
household surveys will typically under-represent 
those in fragile, disjointed or multiple occupancy 
households, those in slums who are difficult to 
identify and interview, those living illegally or 
stigmatized within households (due to mental 
health problems or other disabilities), or those living 
in their place of work such as domestic workers or 
security guards.184 As a result, any mapping of the 
population for purposes of protecting the poorest is 
likely to omit important groups.

Figure 4-12 shows the standard sampling 
methodology based on census records with 
corresponding enumerated areas (EAs) and primary 
sampling units (PSUs). The second row of boxes 
shows the risks of exclusion at different stages, and 
the third row indicates some potential solutions.

Census enumeration areas are often arbitrary and 
delineated for administrative convenience rather 
than corresponding to population distribution. An 
alternative is to start again with satellite images 
which indicate populated areas. These geographical 
areas can then be divided into a grid of one kilometre 

squares. These ‘primary grid cells’ are then analysed 
to identify those with the highest residential 
populations, using characteristics such as building 
patterns, community size, and proximity to other 
land uses. These higher-population cells are then 
sub-divided into secondary grid cells of perhaps 
15 square metres. From this set, some are chosen 
at random and screened for residences, either 
manually or by computer. In the chosen secondary 
cell, enumerators then carry out a micro-census 
contacting every household. This is termed one-stage 
sampling, as opposed to two-stage sampling which 
involves selecting households randomly. These new 
approaches have been used in urban slums of Hanoi, 
Kathmandu and Dhaka and indicate that gridded 
population sampling and one-stage sampling do 
address the problem of undercounting.185

Gridded population data can also be combined 
with other data to estimate the size and locations of 
populations at risk. This is illustrated in Figure 4-13 
for populations in areas at risk of land degradation 
in Central Asia.

With the advances in geo-statistical interpolation 
techniques, it is also possible to integrate the 
disaggregated geospatial data into traditional 
sampling frames.186 For Nepal, for example, statistical 

FIGURE 4-11	 Index-based flood insurance

Source: Amarnath, 2017.
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BOX 4-6	 The Tamil Nadu system for multi-hazard potential impact 
assessment and emergency response tracking (TNSMART) engages 
communities

In India, the Tamil Nadu State Disaster Management Authority uses TNSMART, a web-GIS-based decision 
support system for operations and for communicating to communities.a The data sources include 
geospatial systems, remote sensing, satellite imageries, UAV, Light Detection and Ranging (LIDAR), and 
telemetry.b

The TNSMART web application classifies areas in terms of risk: very high, high, medium and low. 
The  system prepares customized advisories for at-risk communities along with do’s and don’ts. The 
TNSMART mobile application can then send alerts and information about mitigation measures while also 
receiving messages from users. TNSMART also provides forecast-based impact information especially for 
agriculture sector.

TNSMART was used, for example, during 2018 Northeast monsoon, particularly for cyclone Gaja. During 
the preparedness phase, TNSMART helped its 13,000 registered users understand the risk and also 
communicated this to field-level functionaries.c, d Distress messages were received from the general 
public in the State Control Center through the TNSMART app and forwarded to concerned officers/
departments for action. TNSMART helped disaster managers provide location-based services while 
responding to communities at risk. This saved numerous lives due to timely evacuation.

a	 Tamil Nadu State Disaster Management Authority and RIMES (2019).
b	 Ibid.
c	 Ibid.
d	 Ibid.

FIGURE 4-12	 Unintended exclusion of the poorest in a typical household survey

Source: Based on Dana Thomson and R. Bhattarai, 2018.
Note: EA = enumeration area PSU = primary sampling units (s).
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geo-spatial data have been combined with DHS 
data to map a wealth index.187 This wealth map is 
then combined with multi-hazard spatial data on 
floods, landslides and earthquakes to estimate the 
population exposed to disaster risks.

Identifying the excluded and 
digital empowerment
Around 2.4 billion people around the world, typically 
the poorest and most vulnerable lack formal 
identification records such as identity document 
(ID) cards or birth certificates.188 They may then 
find it more difficult to access vital services and 
entitlements which can transmit exclusion over 
generations. To address these issues, Governments 
can take advantage of digital identity systems 
which offer greater choice and convenience. Digital 
identity systems strengthen the capacities of public 
and private sectors to deliver services and create 
a foundation on which to build new systems, services 
and markets (Figure 4-14).189,  190

In Bangladesh, for example, the Government is 
partnering with the World Bank on the Identification 
System for Enhancing Access to Services project. 
This system includes a unique identifying number 
and biometrics-based smart national ID cards for 
citizens, including those in high-risk areas, and the 
socially vulnerable and marginalized. Compared 
with laminated paper ID cards, the smart cards are 
more secure.191

Direct benefit transfer

National ID cards can be used for delivering a variety 
of services to people at risk, including social 
welfare programmes. India, for example, has one 

of the world’s largest public workfare programmes; 
the Mahatma Gandhi National Rural Employee 
Guarantee Act (MNREGA).192 Since 2005, MNREGA 
has provided millions of jobs and has been a vital 
source of income for the rural poor who are at high 
risk of drought and floods. However, in the past, the 
programme suffered from many leakages and delays 
in wage payment. During droughts, some distressed 
poor people even found it uneconomical to work for 
the workfare programme so there was a fall in the 
number of beneficiaries.

This issue has been addressed through direct 
payments. In 2015–2016, the Government of India 
introduced a biometric-enabled national identity 
numbers, named Aadhar, for identifying MNREGA 
beneficiaries, with numbers which were linked to 
their bank accounts.193 Aadhar-linked payments, 
reduced leakages, ensured speedy payment and 
helped to make the programme truly counter-
cyclical (Figure 4-15). Moreover, beneficiaries now 
have more faith in the system, while the Government 
has timely and reliable data, and can transfer benefits 
directly to beneficiary bank accounts, which has also 
improved monitoring and implementation. In India, 
as a whole, the use of Aadhar-linked digital identity 
bank accounts for variety of subsidy and social 
protection schemes saves an estimated $11 billion 
per year.194

Risk-informed social protection

Social protection systems, as shown in Chapter 3, have 
the most impact on reducing extreme poverty and 
inequality. They help the poor and vulnerable cope 
with disaster risk, find jobs, and invest in the health 
and education of their children, while also protecting 
older people. Properly designed and implemented, 

FIGURE 4-13	 Overlaying four data sources to determine poor populations 
exposed to land degradation in Central Asia

Source: ESCAP, based on Global Data Lab, World Pop, FAO.
Disclaimer: The boundaries and names shown and the designations used on this map to not imply official endorsement or acceptance by the United Nations.
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social protection systems can efficiently protect the 
most vulnerable, both in normal times and in the 
event of a disaster.

Such programmes are, however, difficult to implement 
well. Governments often lack disaggregated data, 
or the mechanisms to identify and target people 
at risk, either for short-term emergency responses 
or long-term policy interventions. Another issue is 
fragmentation since many systems offer a range of 
benefits and services that are delivered in a piecemeal 
way. There are also challenges of horizontal and 
vertical coordination, including among multiple 
layers of government.

Improved social protection should be risk informed 
and sufficiently flexible and adaptable to reach 
specific groups that are most at risk of being 
excluded, and to be scaled up at times of disaster. 
During disasters, Governments have responded in 
various ways:195

·	 Vertical expansion —  Increasing the benefit value 
or duration for existing beneficiaries

·	 Horizontal expansion — Adding new beneficiaries 
to an existing programme

·	 Piggybacking   —  Using social protection 
administrative mechanisms to deliver assistance for 
a separate shock-response programme

·	 Parallel operation  —  An additional aligned 
humanitarian programme

·	 Refocusing  —  Adjusting a social protection 
programme on the groups that are most vulnerable 
and excluded

These approaches require the main social protection 
programme to be sufficiently flexible and have 
a comprehensive mechanism for delivering 
benefits and services.196 Governments also need the 
capacity and information to identify the vulnerable 
populations, determine the right responses, and 
prepare to scale-up.

Ideally the population at risk should already be 
registered, with digital IDs linked to bank accounts 
in which they can receive cash transfers. In Ethiopia, 
for example, the Productive Safety Net Programme 
expands at times of shock by increasing the period 
of time over which beneficiaries receive cash 
payments.197

Similarly, in Pakistan, following the floods of 2010 and 
2011, the Government used its National Database and 
Registration Authority to implement a digital cash 
transfer scheme for 1.5 million people affected.198 In 
Nepal, following the 2015 earthquake, DanChurchAid 
used technology from the Hello Paisa international 
money transfer service to make cash transfers to 
more than 10,000 people.199 Governments and 
development agencies often prefer these systems 
as being more flexible and secure. Citizens too 
may prefer cash transfers, seeing them as a right 
associated with their citizen registration rather than 
as aid to them as ‘victims’.200

FIGURE 4-14	 New technologies for resilience, inclusion and empowerment

RISK ANALYTICS BIG DATA ECOSYSTEM DIGITAL IDENTITY

DRONES CROWDSOURCING
SOCIAL MEDIA

SENSOR
WEB

INTERNET
OF THINGS

EARTH
OBSERVATION

ARTIFICIAL
INTELLIGENCE BLOCKCHAIN

MACHINE
LEARNING

98

ASIA-PACIFIC DISASTER REPORT 2019



Blockchains for empowering 
smallholder farmers

In principle, farmers affected by floods or droughts 
should benefit from low-cost agricultural insurance 
schemes. As yet, relatively few do so partly because 
of time-consuming mechanisms for validating 
claims and making payouts.201 A better alternative 
is index insurance based on smart contracts which 
can automate and simplify the process so as to give 
instant payouts. Such contracts rely on automatic 
data feeds that provide hyperlocal weather data that 
eliminate the need for on-site claim assessment.202 

The contracts can use ‘blockchain’ technology, 
in which the data are held in a decentralized 
public digital ledger distributed across many 
computers. Allianz Risk Transfer and Nephila have 
successfully piloted such systems demonstrating 
that transactional processing and settlement 
between insurers and investors can be significantly 
accelerated and simplified by blockchain-based 
contracts.203

Machine learning for 
smart resilience
Disasters present very complex environments with 
very diverse types of data. Even experts can struggle 
to develop models that show the impacts on the built 
environment and society. Their work can, however, 
now be supplemented by machine learning in which 
an algorithm learns from previous data to add new 
information and insights. This will often require ‘data 
mining’ which involves discovering patterns in large 
data sets as well as ‘image mining’ for extracting 
patterns from large collections of images. Though 
the two terms are often used interchangeably, 
machine learning is a subset of artificial intelligence 
(AI) (Figure 4-16). The seamless linkage of machine 
learning with big data ecosystems  —  from the 
image, sound, and voice recognition features 
of smartphones, for example, enables disaster 
managers to identify where people are at risk.

Machine learning is becoming one of the most 
effective methods of processing and analysing data 
on major heterogeneous disasters and speeding up 

FIGURE 4-15	 Job demand and supply in selected drought-affected areas in India, 
2011–2017

Sources: ESCAP based on data from Prasad, Parijat Shradhey, and others, 2018.
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all the necessary analytics to identify the optimal 
responses. In the near future, we can expect more 
complex socioeconomic risk profiles, disaggregated 
by income, age, gender and a host of other 
vulnerabilities to become available, thus opening up 
vast possibilities for building smart resilience that is 
inclusive and empowering.

Earthquake prediction

Because large and devastating earthquakes, 
such as the magnitude 9.0 Tohoku earthquake 
that hit Japan in 2011, are currently considered 
unpredictable, they can be considered as the most 
disempowering of disasters. Scientists do not have 
sufficient seismic data to generate statistical insights 
and develop predictions. An alternative is to apply 
machine learning to data that are continuously 
generated in subduction zones; the boundaries 
where tectonic plates collide. These data reflect the 
slow deformation accumulating in the plates. This 
approach has been tested using computer models 
and could, in the future, predict the timing and size 
of natural subduction earthquakes.204 However, this 
methodology needs much more research before it 
can become operational.

Flood prediction

As discussed earlier, advances in flood forecasting 
have lagged. Machine learning can be used to create 
better forecasting models for floods. This was pilot 
tested in the city of Patna, in the Bihar state in India, 
during the September 2018 floods using Google 

Public Alerts (Box 4-7). The models incorporated 
a variety of elements, from historical events, to 
river-level readings, to the terrain and elevation of 
a specific area, to accurately predict the location and 
severity of floods.205

Exposure and vulnerability

The Keio University in Japan has developed the 
5D-World Map System that provides a multi-
dimensional global knowledge platform to collect 
and analyse ‘real time’ data on SDG-related 
indicators.206 The system integrates the analytical 
visualization of sensor data into a knowledge sharing 
platform with multimedia. This can be used for 
community-based data sharing, awareness building 
and evidence-based decision making.207 The system 
uses machine learning to indicate the exposure of 
critical infrastructure and vulnerable populations 
in multi-hazard risk environments (Figure 4-17 
and 4-18).208

The big data ecosystem
This chapter has shown how such technological 
advances can be integrated into a big data ecosystem. 
Under this approach, asset-level data are gathered 
from various public and proprietary sources, such as 
satellites and censuses in a scalable process, along 
with impact data from previous disasters. These 
are then inserted in data-driven machine learning 
models that require no user inputs and can produce 
impact outputs at high spatial resolutions within 
minutes.

Real-time disaster data can generate accurate 
localized impacts that are updated continually as 
more information becomes available. These include 
data on ground shaking, water levels, temperature, 
and wind patterns from satellites and weather data. 
This interdisciplinary approach takes into account 
multiple-hazard models and dynamic data. It trains 
models on true observations of damage and, by 
seeking solutions that allow for unprecedented 
situational awareness, informs better decisions. Big 
data and machine learning thus create new grounds 
for risk-informed early warning, and dramatically 
shrink the innovation cycle by taking advantage of 
changing technology.

These technologies have spread rapidly in much 
of the world, boosting growth, opportunities, and 
service delivery. Yet, their aggregate impact has 
fallen short of what is possible and is also unevenly 

FIGURE 4-16	 Machine learning a subset 
of artificial intelligence
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FIGURE 4-18	 Image mining and machine learning enabled multi-hazard exposure 
mapping of Kathmandu, Nepal

Source: Sasaki and Kiyoki, 2018.
Disclaimer: The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations. 
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FIGURE 4-17	 Residential roads and educational facilities in earthquake and flood 
high-risk areas in Nepal 

Source: Sasaki and Kiyoki, 2018.
Disclaimer: The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations. 
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distributed. There are also inherent risks, including 
algorithmic bias. The widespread sharing of data 
also raises issues of privacy and cybersecurity and 
potentially erodes individuals’ trust in Governments 
and institutions.209

To be tools for smart resilience that empowers and 
includes those most at risk of being left behind, big 
data systems now need to address these issues. This 
is not easy. It means gathering sufficient data that 
can be translated into usable information along with 
coordination among multiple layers of government 

with integrated information systems. It is also 
important to build public awareness and consent, 
ensuring security and privacy and if necessary 
engaging communities in data collection, building 
their capacity to identify risks and vulnerabilities. 
Companies and Governments holding data should 
be open and accountable.

Above all, industry 4.0 technologies need to build 
disaster resilience of the poorest and most excluded. 
For this purpose, it is vital to close the remaining 
digital divide by ensuring universal and affordable 
high-velocity internet access and adapting people’s 
skills to new demands. Advances in computational 
capabilities and communications seem likely to 
increase our ability to model and assess risk. But 
this does not automatically assure smart resilience 
for all. Results need to be communicated in ways 
that promote effective action and allow people to 
benefit from this rich new source of information and 
knowledge.

BOX 4-7	 Google Public Alerts

Source: TechEngage, 2018. 
Disclaimer: The boundaries and names shown and the 
designations used on this map do not imply official endorsement 
or acceptance by the United Nations.

When there is an important emergency alert 
Android phones will show a public alerts 
card. Google Public Alerts is a private sector 
platform for disseminating emergency 
messages such as evacuation notices for 
hurricanes and earthquakes and everyday 
alerts, such as storm warnings. Currently, 
it publishes content from Australia, Brazil, 
Canada, Taiwan Province of China, Colombia, 
India, Indonesia, Japan, Mexico, New Zealand, 
the Philippines and the United States. Google 
has sent out tens of thousands of public alerts 
which have been viewed more than 1.5 billion 
times. It has also activated SOS Alerts, which 
indicate a higher threat level of more than 200 
times. Google Public Alerts has issues flood 
warnings which are delivered through Google 
Search, Google Maps, and Google Now.
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