Introduction to WEB-GIS

Chathura H Wickramasinghe

Mapping is inventory and presentation of spatial data.

GIS means "Geographical Information System"

- It’s called that because there is information behind the map.
GIS vs CAD

Difference between mapping software or CAD and GIS:

CAD
- Mapping 2D or 3D geospatial data

GIS
- Three levels of GIS applications:
 - Inventory (What is there?)
 - Analysis (Answering questions)
 - Shortest distance
 - Modeling (Making predictions)

GIS vs CAD

CAD stands for Computer-Aided Design

A GIS is a software system that connects map layers with tables of information.

GIS MAP

Image: ESRI course Learning ArcGIS Desktop 2007
Importance of Geographic Data

- GIS is different than most applications
- Word processing, Spreadsheets... are entirely dependent on input of YOUR data
- GIS users nearly always require reference map data (e.g., streets, boundaries) that are maintained by others
- As GIS users, we rely heavily on “external” data sources

Data has to be shared

Evolution of Data Sharing

- Distributed GIS (via web services)
- Downloading Data
- Media Distribution (“ftp”)
- Shared Diskspace
Issues with typical/traditional Data Sharing Methods

- Getting all the data
- Vintage
- Format
- Coordinate System/Projection
- Media Compatibility
- File Size
- Bandwidth
- Metadata Distribution

Typically requires data manipulation prior to use (reformatting, reprojecting, clipping, etc.)

Distributed GIS Model

USGS NY S DEC NY S CSC IC US EPA

DEM Wetlands Orthos Local Data

Real-time access to geographic data and services

Virtually Any Client
Mashup

- An application that combines data from multiple sources
- Referred to as “content aggregation”
- Combines similar types of data (e.g., maps,) from different systems/services
- Term originated from music industry when a new song was made from several existing tracks

Distributed GIS Advantages

- Format is irrelevant
- Guarantees latest data
- No media involved
- Size is irrelevant (only requested data needed)
- Software independent
Distributed GIS Advantages

- Device independent (PC, phone)
- Saves Time!
- Data security
 - Only view data
 - Download data
 - Data upload and editing

Desktop software's also support WMS
- QGIS
- ArcGIS

Advantages
- Carryout advance GIS operations on the data.
- Use as source data for GIS analysis.
- Easy to search and access data.
Distributed GIS Disadvantages

- Dependent on server availability
- Dependent on internet availability
- Users need to be aware of web service

Service Oriented Architecture

- Architecture that is based on integrating “loosely coupled”, interoperable services

- Loosely coupled means NOT physically bound or compiled like an EXE or DLL

- These services can be invoked and consumed remotely over a network

- Data and messages are exchanged between clients and services
Basic Web Page Operation

Web Server
(Listening for requests)

Request

Response
(HTML document)

Web Service Operation

Client

Web Server
(Listening for requests)

1. Creates XML Request
2. Request sent to web service

3. Receives request and parses XML
4. Calls the function
5. Creates response XML with results
6. Response sent to client
7. Receives response and parses
Types of Geospatial Web Services

- Map/Data Oriented Services
 - Map Services (Image)
 - Feature Services (Vector)
 - Coverage Services (Grid)

- Task Oriented Services
 - Routing Services
 - Geoprocessing Services

Map Services

- Client requests a map from a server for a specified geographic extent
- Map Server renders the requested map internally and converts to an image file (e.g., JPG, PNG, GIF) and returns the map image to the client for display
- Fast map display is possible.

"Google Map" made way for WebGIS popularity

99% of current activity's in Web GIS Map/Image Serving
Map Service Operation

1. Creates XML Request
2. Request sent to web service
3. Receives request and parses XML
4. Calls the map server to request map
5. Map server generates map as image file
6. Creates response XML with image file
7. Response sent to client
8. Receives response, parses to extract image and updates map

Sample site
- http://maps.eyesontheforest.or.id/
- https://mapsengine.google.com/map
Need for standardization

- Every one was creating own standards
 - Google maps
 - Bing Maps
 - USGS

- Make universal data sharing possible.
- Overcome technical challenges.
- Make way for rapid development in WebGIS.

OGC and Open Web Mapping

- The Open Geospatial Consortium (OGC) was founded in 1994
- An international consortium of 346 organizations that lead the development of open standards and specifications to enable the interoperability of geospatial and location based services

- They have developed a series of open standards for geospatial web services such as:
 - Geography Markup Language (GML)
 - Web Mapping Services (WMS)
 - Web Feature Services (WFS)
 - Web Coverage Services (WCS)
- Referred to as “OpenGIS®” standards
OGC Web Services (OWS)

- Web Map Service (WMS)
 - Web Map Service Interface Standard (WMS) provides a simple HTTP interface for requesting geo-registered map images from one or more distributed geospatial databases. A WMS request defines the geographic layer(s) and area of interest to be processed. The response to the request is one or more geo-registered map images (returned as JPEG, PNG, etc) that can be displayed in a browser application.

- Web Feature Service (WFS)
 - The WFS operations support INSERT, UPDATE, DELETE, LOCK, QUERY and DISCOVERY operations on geographic features using HTTP as the distributed computing platform. It is the function of a web feature service, in its interaction with the data storage system used to persistently store features, to ensure that changes to data are consistent.

- Web Coverage Service (WCS)
 - The OpenGIS® Web Coverage Service Interface Standard (WCS) defines a standard interface and operations that enables interoperable access to geospatial "coverages" [http://www.opengeospatial.org/ogc/glossary/c]. The term "grid coverages" typically refers to content such as satellite images, digital aerial photos, digital elevation data, and other phenomena represented by values at each measurement point.

Web Mapping Services (WMS)

- WMS is the OGC specification for implementing a map (image) service
- Does not allow for cached map services
- WMS provides 3 functions for clients to access functionality
- Two functions are mandatory to be implemented, the third function is optional
- This results in two general “types” of WMS Services
 - Basic
 - Queryable
Web Mapping Services (WMS)

Basic WMS Service
Every WMS service MUST support the following two functions:
- GetCapabilities – Describes the capabilities and available layers
- GetMap – Generates a map image based on input parameters

Queryable WMS Service
The following function is optional for WMS services:
- GetFeatureInfo – Gets the attributes for a specified feature

http://www.opengeospatial.org/standards/wms

What can be done with a WMS service?

- Each client application (e.g., ArcView, MapInfo, Google Earth, etc.) handles WMS services differently
- However, generally the following functions are available:
 - Map Display and navigation
 - Zoom to layer
 - Layer Control
 - Identify feature (only with Queryable Map services)
- Anything else is not available
 - No feature selection
 - No geoprocessing
 - No attribute table/browser display
 - Menus/Buttons are greyed out and disabled
WebGIS Components

• Client:
 – Internet Browser such as Internet Explore, Mozilla firefox etc
• Internet Connection:
 – Performance of a web mapping site largely depends on the bandwidth of the Internet connection
 – Higher the bandwidth better the performance
• Web server
 – Handle the requests from Web Browser (user) and Return the web page
 – Apache, IIS
• Meta Data
 – Data about data
 – Including Server URL, Owner etc
Web GIS Components (Cont ……)

Map Server
- The MapServer is the engine behind the maps you see on a web page.
- The Map Server needs to be configured to communicate between the web server and assemble data layers into an appropriate image.

Map viewer
- Renders the maps on the client side
- The relationships among Objects
 - Map Extent
 - Map Size
 - Reference Map (Key Map)
- Point Map Server where to locate data
- Define how things are to be drawn
 - Colors
 - Labeling etc…

WEB GIS Software

<table>
<thead>
<tr>
<th>Category</th>
<th>Commercial</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Systems</td>
<td>Windows</td>
<td>Linux</td>
</tr>
<tr>
<td>Database SW</td>
<td>ORACLE, MSsql</td>
<td>Mysql, Postgresql</td>
</tr>
<tr>
<td>Spatial Database SW</td>
<td>ORACLE Spatial</td>
<td>MySQL Spatial, PostGIS</td>
</tr>
<tr>
<td>RS\GIS Applications</td>
<td>ArcGIS, ERDAS, ENVI</td>
<td>ILWIS, GRASS, QGIS</td>
</tr>
<tr>
<td>Web GIS Applications</td>
<td>ArcIMS</td>
<td>MapServer, GeoServer</td>
</tr>
<tr>
<td></td>
<td>ArcGIS Server/ArcSDE</td>
<td>Mapbender, OpenLayers</td>
</tr>
</tbody>
</table>
Open WEB-GIS components

Map Servers

Rendering spatial data (maps, images, and vector data) for the web
- Minnesota MapServer
- GeoServer

Map Viewer

It provides a data model and web based interfaces for displaying, navigating and querying OGC compliant map services
- Mapbender
- OpenLayers

WebGIS using open source tools

Example: The following WebGIS application was developed using GeoServer & OpenLayers
Open Web GIS solutions

GeoNode

GeoNode is a web-based application and platform for developing geospatial information systems (GIS) and for deploying spatial data infrastructures (SDI).

http://geonode.org/

GeoNetwork opensource

GeoNetwork is a catalog application to manage spatially referenced resources. It provides powerful metadata editing and search functions as well as an embedded interactive web map viewer. It is currently used in numerous Spatial Data Infrastructure initiatives across the world.

http://geonetwork-opensource.org/

Core components

- Upload Vector & Raster data
- Metadata support
- Create Maps
- Print maps as pdf

- Up- and downloading data, graphics, documents, pdf files
- Online editing of metadata
- Scheduled harvesting and synchronization of metadata
- Support for OGC-CSW 2.0.2 ISO Profile, OAI-PMH, Z39.50 protocols.
GeoEDGE

Compilation of Free Open source Web GIS resources Powerful tool that support
- Map services
- GIS spatial operations
- Map display
- Advance Spatial analysis
- Automatic Geocoding
- Geo reference map views
- Interactive multi user digitizing

Web Processing Services

Web Processing Service

- The OpenGIS® Web Processing Service (WPS) Interface Standard provides rules for standardizing how inputs and outputs (requests and responses) for geospatial processing services, such as polygon overlay.

- The standard also defines how a client can request the execution of a process, and how the output from the process is handled. It defines an interface that facilitates the publishing of geospatial processes and clients’ discovery of and binding to those processes. The data required by the WPS can be delivered across a network or they can be available at the server.
WPS

Advantages
- GIS Operation online
- No need of GIS applications
- Easy to use
- No need of GIS knowledge
- Can be done on any device (mobile / pc)

Disadvantages
- Need powerful server

Thank You